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ABSTRACT 

Along with development of a variety of data mining techniques, numerous feature 

selection methods have been introduced to reduce dimensionality. This may improve 

scalability and make interpreting learning models easier. In this dissertation a new 

optimization based feature selection method using the nested partition (NP) approach is 

presented, including both basic analysis of the NP framework and numerical results on 

various experiment problems. The numerical results show how the optimal structure of the 

NP makes contributions on a feature selection process. Further, it is addressed how the new 

intelligent partitioning method obtains very high quality partition efficiently. The feature 

selection method is implemented as both a filter and a wrapper. 

In addition, the scalability of the algorithm, which is the most significant issue in mining 

large databases, is also dealt with according to the instance dimension, the feature dimension, 

and new features adaptation. However, since the NP naturally handle the feature dimension 

effectively, the dissertation mostly focuses on scalability with respect to the instance 

dimension. In this research problem, two systematic approaches to improve scalability of 

instance dimension are presented, which both utilize random sampling. Through this study, a 

predicted best solution for the size of instance samples is presented using a two-stage version 

of the NP that also incorporates statistical selection, and a heuristic solution is as well 

presented in a new adaptive version of the algorithm. Numerical results report that those two 

approaches are effective for scalability improvement, and perform better than the generic NP 

method that uses a static sampling approach. 

In order to have the NP feature selection method flexible for handling mixed type of 

features, feature quality evaluators are introduced to determine the order of partitioning with 

experiment results reporting which one performs better based on a data domain. Finally as a 

case study, a recommender system that can be effectively used in B2B (business to business) 

e-business systems is provided using classification, association rules and the new NP-based 

feature selection method. The systems create recommendation rules for Internet auction 

participation and auction bids. The new feature selection algorithm is used to build a simple 

recommendation model that can be easily explained. 
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1 INTRODUCTION 

In a modem world, databases contain huge amount of data that includes useful 

information. But, businesses may have some difficulties to extract useful information from 

the massive data that resides in these databases, which has been a motivation for 

continuously increased research in a knowledge discovery area. This process of discovering 

useful information in large databases consists of numerous steps, which may include 

integration of data from legacy databases, manipulation of the data to account for missing 

and incorrect data, and induction of a model with a learning algorithm, which is then used to 

identify and implement actions to take within the enterprise. Traditionally data mining draws 

heavily on both statistics and artificial intelligence, but numerous problems in data mining 

and knowledge discovery can also be formulated as optimization problems [Basu, 1998; 

Bradley et al., 1999]. 

All data mining starts with a set of data or a training set, which consists of instances 

describing the values of certain features. These instances are then used to learn some target 

concept, and depending upon the nature of this concept different learning algorithms are 

applied. One of the most common concepts is classification [Quinlan, 1986], where a 

learning algorithm is used to induce a model that classifies any new instances into one of two 

or more given categories. The primary objective may be for this classification to be as 

accurate as possible, but accurate models are not necessarily useful or interesting and other 

measures such as simplicity and novelty are also important. In addition to classification, 

other common concepts to be learned include association rules, numerical prediction models, 

and natural clusters of the instances. 

Apart from the inductive learning, an important problem in knowledge discovery is 

analyzing the relevance of the features, usually called feature or feature (both terms are used 

with same meaning) subset selection that can be used to get simplicity as well as possibly 

accuracy benefits for the inductive learning. In this dissertation we primarily focus on the 

analysis of the feature relevance where the data is nominal, that is, each feature can only take 

finitely many values. Specifically, we introduce a new optimization-based approach for 

feature selection. If the data is not nominal, a standard discretization technique can be applied 
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as a preprocessing step [Fayyad and Irani, 1993]. However, in order to overcome this 

limitation, we also introduce several feature quality evaluators to deal with mixed type of 

features. We also deal with scalability of the feature selection method that is newly 

introduced. Finally we apply the new feature selection method to create the recommender 

system, an Internet auction system to facilitate reverse logistics that Ryan, Min, Olafsson, 

Min, (2001) described. Finally, it is shown how the feature selection method can be used to 

improve performance and readability of the recommendation model. 

1.1 Feature Selection Method 

Feature selection is an important data mining problem for numerous reasons. This 

involves a process for determining which features are relevant in that they predict or explain 

the data, and conversely which features are redundant or provide little information [Liu and 

Motoda, 1998]. Feature selection is commonly used as a preliminary step preceding a 

learning algorithm, which has numerous benefits. By eliminating many or even most of the 

features it becomes easier to train other learning methods, that is, computational time is 

reduced. Also, the resulting model may be simpler, which often makes it easier to interpret 

and thus more useful in practice. It is also often the case that simple models are often found 

be generalize better when applied for prediction. Thus, a model employing fewer features is 

likely to score higher on many interestingness measures and may even score higher in 

accuracy. Finally, discovering which features should be kept, that is identifying features that 

are relevant to the decision making, often provides valuable structural information and is 

therefore important in its own right. 

The literature on feature relevance analysis is extensive within the machine learning and 

knowledge discovery communities, mostly under the name of feature selection. One way to 

classify the various algorithms is according to whether they evaluate one feature at a time 

and either include or eliminate this feature, or if an entire subset of features is evaluated 

together. According to such search schemes, most of the methods applied for this problem in 

the past can be categorized into sequential, random and exponential search based algorithms. 

This approach uses random search to explore the entire space of possible feature subsets, and 
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is thus similar to methods such as genetic algorithms and evolutionary search, although the 

search strategies themselves are quite different. 

On the other hand these and other feature selection methods can be typically classified as 

either/z/fering that produce a ranking of all features before the learning algorithm is 

applied or wrapper mef/zodiy that use the learning algorithm to evaluate subsets of features 

(See Figure 1.1). As a general rule, filtering methods are faster whereas wrapper methods 

usually produce subsets that results in more accurate models. We note that wrapper methods 

always fall into the latter category. 

All Features All Features 

Feature Space Search 

Features Evaluation 

Fitness Function 

ir 

Feature Space Search 
- Feature Subset 

Generation 

Features Evaluation 

Learning 
Algorithm 

Feature Subset Feature Subset 

Learning 
Algorithm 

Learning 
Algorithm 

(a) Filter Approach (b) Wrapper Approach 

Figure 1.1 Two approaches to feature selection on the learning algorithm dependence. 

The feature selection problem is generally difficult to solve. The number of possible 

feature subsets is 2", where » is the number of features, and evaluating every possible subsets 

is therefore prohibitively expensive unless » is very small. Furthermore, in general there is no 

structure present that allows for efficient search through this large space, and a heuristic 

approach, that sacrifices optimality for efficiency, is typically applied in practice. Thus, most 

existing methods do not guarantee that the set of selected features is the optimal in any sense 

with a notable exception recently that applies mathematical programming to feature selection 

[Bradley, Mangasarian, and Street, 1998]. Furthermore, many of the widely used methods do 
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not allow the user to explicitly specify how many features should be considered. Some 

methods may thus have a bias towards sets with large number of features, and vice versa. 

Many of the methods have proven themselves valuable in practice, but not being able to 

make rigorous statements about the set of selected features without resorting to 

computationally expensive or otherwise restrictive methods is an apparent shortcoming. 

In this dissertation, we propose the new feature selection methodology, which applies an 

optimization method called the nested partitions method [Shi and Olafsson, 2001] and its 

scalability. It is also addressed how the intelligent partitioning scheme that imposes a 

structure on the search space is incorporated in the new feature selection method to provide 

an efficient search. 

1.2 Scalable Optimization-Based Feature Selection 

Careful feature selection can improve the scalability of a data mining system as the 

induction is usually much faster with fewer features. Furthermore, feature selection also has 

an inherent value in that some structural knowledge may be obtained by selecting which 

features are important. In particular for applications where the last point is true, that is, we 

are really interested in which features are important, then considerable computation effort is 

justifiable for the feature selection process. 

One situation where feature selection has intrinsic value is applications where it is 

important to not only obtain accurate predictions from a model but also to explain to a user 

how that prediction was obtained. In addition to the basic of new feature selection method, in 

this work we focus on the scalability of this approach in terms of its ability to handle 

increasing number of instances and increasing number of features [Liu and Setiono, 1998]. 

1.3 Mixed Type of Features and Recommender Systems 

Our initial work will use the well known information gain [Quinlan, 1986] to evaluate 

feature quality. This has the limitation where a discretization process must be employed to 

evaluate numerical features. To overcome this limitation, we introduce two feature quality 

evaluators, namely correlation and ReliefF [Kononenko, 1994]. Those two feature evaluators 

are used in the NP feature selection algorithm to determine a partitioning order of features. 
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The numerical results are reported in terms of accuracy, size, and computational time based 

on three different kind of datasets, namely nominal, mixed and numeric. We investigate how 

the performance measures in the NP-Filter may be affected by the different feature quality 

evaluators with several learning algorithms through the numerical results. 

As an application of the NP feature selection methods that is capable of handling mixed 

type of features, the recommender decision support for the auction system described above 

that can be effectively used in e-commerce systems between business to business is provided 

using classification and association rules. Through this case study we explore how 

recommendations in an e-auction system to users can be made intelligently and which 

benefits can be acquired by applying feature selection. 

The remainder of this dissertation is organized as follows; 

* Chapter 2 

This chapter surveys the literature related to the dissertation. Methods that have 

been proposed on feature selection, their scalability and recommender systems are 

discussed with some notion on relationship between those works and this 

dissertation. 

* Chapter 3 

We discuss the basis for the new feature selection methodology, which is an 

optimization method called the nested partitions method. We report our numerical 

results in applying the method on well known classification problems. We also 

briefly evaluate the effectiveness and scalability of the new algorithms. 

* Chapter 4 

In this chapter, we present systematic approaches to improve scalability of the 

proposed feature selection method. Furthermore, with the design of computing 

experiments about the tests that have not been presented in the previous chapter, 

various experiment results verify which approach is more efficient under some 

conditions. 
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Several comments on limitation in the new methodology and alternatives to 

overcome the limitation are stated. Finally it is presented how the new feature 

selection method will be used for creating recommendation models. 

Chapter 6 

We conclude with a summary of the contribution of this dissertation and address 

some interesting directions for future research. 
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2 LITERATURE REVIEW 

In the first section, we will review the literature on feature selection methods and will 

discuss scalability which is critical for avoiding complicated discovery processes on all the 

data. We also explore some of the current research on recommender systems. 

2.1 Feature Selection Methods 

A variety of feature selection methods have been proposed in the literature. The primal 

objective of feature selection is to find a possibly optimal or best feature subset by evaluating 

subsets of search space. In general, feature selection methods can be categorized into 

sequential search, random search, and exponential (exhaustive) search based algorithms 

according their search strategy [Doak, 1992]. Taking into account whether or not feature 

selection process embeds a learning algorithm, we can classify them into one of both filter 

and wrapper approaches [John, Kohavi and Pfleger, 1994]. 

2.1.1 Sequential Search Based Feature Selection 

Various sequential search algorithms have been proposed. Sequential search algorithms 

sequentially add or remove features depending on a certain criteria using a hill climbing 

search strategy [Aha and Bankert, 1996]. 

The most well-known hill climbing search methods are forward selection and backward 

elimination methods. The forward selection starts with an empty feature set and adds/drops 

one feature at a time depending on whether or not it can improve the performance of the 

learner. On the other hand, the backward elimination starts with a complete set and remove 

one feature at a time using the same criteria as that of forward selection. Aha and Bankert 

(1996) examined variants of forward and backward feature selection. Koller and Sahami 

(1996; 1997) employed forward selection and backward elimination to remove features 

according as a Markov blanket can be found within the set of remaining features, where a 

Markov blanket is a set of features that make the selected features conditionally independent 

of the remaining features and class feature. 
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Doak (1992) proposed bi-directional search for feature selection which does not add 

eliminated features and remove added features. Caruna and Freitag (1994) also proposed five 

hill greedy climbing procedures including three bi-directional search methods, FSS (Forward 

Stepwise Selection), BSE (Backward Stepwise Elimination) and BSE-SLASH. Both FSS and 

BSE start with empty and whole feature set respectively like others, but they can add or 

remove features at any step other than general forward and backward methods. Since they 

consider a best solution at a point, the solution can easily lead to local optimum. With the 

observation that it is not frequently for some learning algorithms (e.g. C4.5, ID3) to use 

many features, the BSE-SLASH starts with a complete feature set and removes features not 

used in learning procedures at every step. This search scheme allows a direct move to regions 

considering all features used in what is learned. 

Kohavi (1994) and Kohavi and Frasca (1994) used a best first search [Ginsberg, 1993] to 

choose a set of relevant features maximizing the bootstrap accuracy estimate of the induced 

classifier at each state. Since the complexity of the search space is very expensive, 0(2"), the 

search terminates when no improvement for a performance is found after & attempts [Raman, 

loerger, 2003]. Hall (1998) also employed a best first search in correlation-based filter 

algorithms. 

The PRESET algorithm [Modrzejewski, 1993] uses rough sets theory to heuristically 

rank the features assuming a noise-free binary domain. A limitation to this approach is that it 

will fail to find the relevant features in case that features are highly correlated such as the 

parity problem, that is, the relevant features can not be found in the combinations of a few 

features [Liu and Setiono, 1998]. 

2.1.2 Random Search Based Feature Selection 

Random search has a benefit that general heuristic based algorithms do not have, which 

can prevent the algorithm from easily falling into one local solution. Yang and Honavar 

(1998) used a genetic algorithm [Mitchell, 1997] to select a feature subset for neural network 

pattern classifiers (See Figure 2.1). The genetic operators, crossover and mutation, are very 

frequently used in genetic algorithms that represent individuals as binary strings. Given a 

string (e.g. 1111), the mutation operator changes 1 bit from 1 to 0, which represents that the 
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feature in the position of the bit 1 is deselected. Contrarily, change from 0 to 1 corresponds to 

a selected feature. Crossover exchanges, at a randomly selected position, sub-strings of two 

parent strings to produce two offspring. The genetic operators enable the algorithm to explore 

the feature subset space. 

Rank-Based 
Selection 

Mutation (#z) 

Crossover (p,) Survival (1-/?,) 

Best Individual 

Generate Initial Population (size /?) 

Pool of Candidate Feature Subsets 
Using Rank-Based Selection 

Evaluate Fitness Values 
(using learning algorithms or 

filter such as correlation) 

Apply Genetic Operator 

Figure 2.1 Feature selection procedures using a genetic algorithm [Yang and Honavar, 1998]. 

Feature selection using evolutionary search was proposed to search for all possible 

combinations of features and numbers of clusters with a standard K-means algorithm [Kim, 

Street, and Menczer, 2000]. Randomized (stochastic) search named random mutation hill 

climbing was proposed to select features and prototypes simultaneously for nearest neightbor 

classification where the prototypes are regarded as reference instances used in nearest 

neighbor computation [Skalak, 1994]. 

The Relief algorithm is an instance based filter that can handle numeric and nominal 

features but can not deal with more than 2 class problems [Kira and Rendell, 1992]. 

Kononenko (1994) proposed its variants solve the problems above on incomplete data set 
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(unknown value) and multiple classes. Liu and Setiono (1996a; 1996b) proposed LVF and 

LVW that are a modified version of Las Vegas algorithm [Brassard and Bratley]. Both LVF 

and LVW employ a random search to find relevant features. 

2.1.3 Exponential and Optimal Search Based Feature Selection 

All exhaustive search methods have an exponential time complexity which is 

impractical. This search can find an optimal solution, but contrarily all the optimal search 

methods do not require the exhaustive search. For example, if an evaluation measure is 

monotonie, the branch-and-bound algorithm can find an optimal solution [Naranda and 

Fukunaga, 1977]. The FOCUS algorithm starts with an empty feature set and performs 

exhaustive search until it finds a subset of as few features as possible called MIN-

FEATURES that is in favor of consistent hypotheses on training examples [Almuallim and 

Dietterich, 1994]. It has limitation that the algorithm works on binary input features. The 

authors proposed three heuristics to make the search faster. 

Bradley, Mangasarian and Street (1998) recently proposed feature selection methods 

applying mathematical programming. This mathematical model has a parametric objective 

function approximated by a sigmoid or by a concave exponential. The problem can be solved 

to achieve minimal number of features maintaining acceptable accuracy by generating a 

separating plane in a reduced feature space while minimizing the average distance of 

misclassified points to the plane. Koller and Sahami (1996) presented a theoretical model for 

optimal feature selection based on cross-entropy to minimize the amount of predictive 

information loss when removing features. 

2.1.4 Filter and Wrapper Approaches 

As stated previously, feature selection methods can be categorized into filter and 

wrapper approaches, depending on whether or not the feature selection process is dependent 

of a learning algorithm. 

The filter approach methods use a fitness function for evaluating feature subsets rather 

than using a learning algorithm. The most widely known existing algorithms that fall into the 

filter approach are FOCUS [Almuallim and Dietterich, 1994], Relief [Kira and Rendell, 
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1992] and its variants [Kononenko, 1994], CPS (Correlation Based Feature Selection) [Hall, 

1998], and cross-entropy filter [Koller and Sahami, 1996]. Other algorithms except FOCUS 

stated in the previous subsection will be dealt with in main chapters later in detail. 

On the other hand, the wrapper approaches use a learning algorithm in the feature 

selection process. The wrappers usually provide better accuracy but are computationally 

more expensive than the filters [Raman and loerger, 2002]. Kohavi and John (1997) used the 

best first search for a wrapper approach. Many algorithms stated previously such as genetic 

algorithm [Yang and Honavar, 1998] and LVW [Liu and Setiono; 1996b] incorporate with a 

learning algorithm for evaluating feature subsets. 

2.2 Scalability for Data Mining 

Scalabihty of feature selection can be considered in terms of its ability to handle large 

number of instances, large number of features, and increasing features [Liu and Setiono, 

1998]. Even though the authors proposed how to make LVF, feature selection algorithm, 

scalable by random sampling, research on scalabihty in feature selection has been much less 

emphasized than that on scalability in learning algorithms. The one reason might be because 

feature selection already employs scalability concept. 

Most techniques that have been proposed for scaling up learning algorithms can be 

categorized into "design a fast algorithm", "partition the data", and "use a relational 

representation" where representing data relationally helps scale-up mining due to more 

efficient data representation [Provost and Kolluri, 1999]. The greedy, divide-and-conquer 

approaches to building class descriptions are very well-known fast algorithms that had much 

success for the time complexity. The run time of ID3 [Quinlan, 1986] and C4.5 [Quinlan, 

1993] increases linearly in the number of instances for non-numeric data sets. In practical 

problems, those algorithms take more time usually. However, pruning techniques can make 

the algorithms scaled up. In addition, many heuristic algorithms have been developed for 

scaling up by Ending approximate solutions. 

The data partitioning approach usually includes selecting an instance subset, selecting a 

feature subset, or processing subsets sequentially/concurrently. When it comes to scalability 

of instances, Catlett (1991) stated that sampling instances involves random sampling, 
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duplicate compaction that removes duplicated instances, and stratified sampling by selecting 

the minor classes more frequently in order to make the class values uniformly distributed. 

Here the problem on the appropriate sample size to maintain an acceptable accuracy arises. 

Toivonen (1996) discussed the sufGcient sample sizes for finding association rules that are 

probably consistent with whole database and are no smaller than a predetermined sample 

size, based on thresholds on the probability of error and the size of the error. Provost, Jensen, 

and Oates (1999) studied progressive sampling methods for finding minimum number of 

instance samples, that starts with a small sample and takes progressively larger ones until the 

accuracy no longer improves. This sampling method takes samples based on the "sampling 

schedule", S = {»o, »2, -. -, »&} where is an integer that specifies the sample size. For z < 

y, < M,. The authors addressed that schedules where the n, increases geometrically make an 

efficient samphng method and an adaptive sampling algorithm based on knowledge of 

convergence and actual run-time complexity. Kivinen and Mannila (1994) stated upper and 

lower bounds for the sample sizes needed for approximately verifying sets of universal 

statements by using a tuple relational calculus, given a relation M. Here universal statements 

mean sentences that express information about the general structure of the data in databases, 

simply relational calculus. 

Domingo, Gavalda, and Watanabe (2000) studied how to reduce the dimensionality of 

the data set using adaptive random sampling. This includes a sequential sampling approach 

that takes different number of samples sequentially depending on whether there have been 

already a large enough number of samples. The authors insisted that theoretical bounds for 

sample sizes in the batch sampling approach (static sampling approach that calculates the 

size a priori) are overestimated for most situations since the bounds consider an worst case 

situation. The adaptive sampling in an on-line sequential fashion having a statistical stopping 

criterion can overcome the problem above, thus the algorithm called AdaSelect that the 

authors proposed can take very fewer samples in an worst case. 

John and Langley (1996) also proposed an adaptive (dynamic) sampling method, 

comparing with a static method. The dynamic sampling uses knowledge about the behavior 

of the learning algorithm to calculate a sample size based on a criterion called "PCE 

(Probably Close Enough)" for evaluating a samphng strategy. The PCE implies that there is 
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only a little chance that the learning algorithm could perform better by using the entire 

database instead. The smallest sample size, «, is taken based on the following formula. 

Pr(acc(7V) - acc(m) > g ) < ^, where acc(n) is the accuracy of a learning algorithm with the 

sample size n, acc(7V) refers to the accuracy with the entire database, g means "close 

enough" specified by a customer, and <5 means "probably". 

Weiss and Provost (2001) considered scalabihty from a different view by investigating 

the effect of class distribution on learning when the sample size must be limited. It is 

addressed that the based on the fact that classifiers performs worse on the minority class than 

on the majority class, allocating half of the training examples to the minority class can lead to 

perform better then using a natural class distribution. Thus, the authors suggested that using a 

progressive (adaptive) sampling strategy [Provost, Jensen and Oates, 1999] depending on the 

added minority and majority class examples can make better performance for classification 

learning. 

2.3 Recommender Systems 

In general, recommendation systems can be categorized into two areas such as 

collaborative filtering (social filtering) methods and content based filtering methods. Ten cen 

and Hill (2001) addressed more detailed groupings as follows; content-based recommenders, 

recommendation support systems, social data mining and collaborative filtering. The content 

based filtering methods use information about things or items and user profiles as features, 

for example, director and other staff lists, actor/actress, genre, plots, user reviews for a movie 

case, and age, gender, etc. for user profiles. Those methods make recommendations based on 

similarities between items to appropriate users. Karypis (2000) proposed an item-based 

recommendation algorithm. This algorithm first computes the similarity between the items, 

second combine these similarities, and finally computes similarity between a "basket" of 

items and a candidate recommender item and make recommendations. 

Research of the recommender systems has mainly focused on the business to customer 

problems that deal with information from a customer about which products a user is 

interested in [Sarwar, Karypis, Konstan, Riedl, 2000]. This kind of recommender systems use 

usually a collaborative filtering which is one of the earliest and most successful 
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recommander systems [Resnick, lacovou, Suchak, Berstorm, Riedl, 1994; Shardanand, Maes, 

1995; Hill, Stead, Rosenstein, Fumas, 1995; Konstan, Miller, Maltz, Herlocker, Gordon, 

Riedl, 1997]. Those recommendation systems can be regarded as social filtering methods that 

use ratings of users on "things" (for example, movies, music titles, books, etc.) and make 

recommendations to users considering new candidate items by using nearest neighbor 

techniques. Collaborative filtering matches people having similar interests and make 

recommendations [Terveen and Hill, 2001]. Thus, the methods must have participants who 

experienced similar items before to produce recommendations. Since these methods do not 

usually consider the data explaining nature of things, that approach may not be affected by 

the properties of things and maybe unbiased [Hill, Stead, Rosenstein, Furnas, 1995]. 

Learning algorithm based recommender systems other than nearest neighbor based 

clustering have also been proposed. Guttman, Maes and Moukas (1998) addressed the model 

about purchasing behavior pattern of consumers using classification, which includes 

recommendations on which products to buy or broker and from whom to buy or broker 

products. Basu, Hirch and Cohen (1998) proposed an inductive approach to recommendation 

by employing both social and content-based filter methods. The approach formulated 

recommendations as a classification problem. 

Breese, Heckerman and Kadie (1998) proposed model-based statistical algorithms for 

collaborative filtering or recommender systems employing Bayesian network and Bayesian 

clustering. This approach first constructs a basic model for user preferences where 

predictions are inferred. In the Bayesian clustering model, users having a similar pattern are 

clustered together as classes with assumption that ratings of a user are independent. From the 

model, the number of classes and the parameters of the model can be learned. In the Bayesian 

network model, variables in the network are titles with values having the allowable ratings. 

The structure of the network encodes the dependencies between titles which can be learned 

from the data with the conditional probabilities. 

Good, Shafer, Konstan, Borchers and Sarwar (1999) proposed the approach to combine 

collaborative filtering and personal information filtering agents to produce better 

recommendations than each individual agent does. Lin, Alverez and Ruiz (2000) developed 

the collaborative recommendation based on association rules. The algorithm adjusts the 
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minimum support in order that the number of rules lies in a specified range and provides rule 

based recommendations. Vucetic and Obradovic (2000) proposed a regression based 

approach that searches for relationships between items, builds simple linear models, and 

combines the models to provide recommendations for users. 

2.4 Summary and Discussion 

In this chapter, we addressed that many researchers have proposed a number of feature 

selection methods with various attempts in order to reduce the dimensionality of a feature so 

that induced learning models can be easily interpreted. In general, most feature selection 

algorithms do not provide solutions that are optimal as well as found in practically reasonable 

time, that is, it is rare to find methods to satisfy both the conflict objectives. Thus, it gives 

motivation for new research to overcome the dilemma. 

In addition, we introduced research on recommender systems with a variety of different 

approach. The collaborative filtering based recommendation systems using nearest neighbor 

that are more appropriate for business to customer (BtoC) e-commerce systems have been 

more emphasized. However, it is expected that more recommender systems for business to 

business (BtoB) systems would be proposed. 
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3 SCALABLE NP BASED FEATURE SELECTION 

3.1 Introduction 

The basis of the NP (Nested Partition) method, the new feature selection algorithm 

applying the NP, and its scalability problems are presented in this chapter. The key to the 

success of this method is a partitioning scheme that imposes a structure on the search space. 

Thus, it becomes critical to intelligently take advantage of special structure, and we develop 

such methods for partitioning for feature selection and report on our numerical experience in 

applying the method on well known classification problems. In addition we evaluate the 

effectiveness by comparing the NP feature selection method with no feature selection, 

entropy filter based feature selection and other feature selection methods and scalability of 

the new algorithms. 

We define the feature selection problem as an integer program (IP) and analyze the new 

methodology's complexity. The scalability of this new methodology is presented by 

analyzing the scalability of the method with respect to both the instance dimension and the 

feature dimension. Finally, we summarize and discuss the presented issues and results. 

3.2 Optimization Foundation 

The basis for our new feature selection methodology is a recently proposed optimization 

method called the nested partitions method, and we start by considering the key concepts of 

this approach. 

3.2.1 The Nested Partitions Method 

The nested partition method was developed in [Shi and Olafsson, 2000] for solving 

global optimization problems where the feasible region is finite, that is, problems of the 

form: 

min/W (3.1) 
.re.Y 

where / : % -» if if a real valued performance measure defined on the finite set % 
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We note that although our initial discussion of the NP method is generic, what we are 

interested in is the application of this methodology to feature selection in classification 

problems, where a subset of features is used to predict the class of a given instance based on 

their feature values. In this context Xis the space of all possible feature subsets, andis a 

measure such as the accuracy of applying a given learning algorithm to the classification 

problem using the features in % e X , that is, the percentage of training instances that are 

classified correctly. To distinguish this problem from the generic case we denote the feasible 

region, that is the space of all feature subsets, as /4, and a particular solution or a feature 

subset in this space as e /4 . 

The basic idea of the NP method is to systematically partition the feasible region into 

subsets and focus the computational effort in those subsets that are considered promising. 

The main components of the method are: 

* Partitioning: at each iteration the feasible region is partitioned into subsets that 

cover the feasible region but concentrate the search in what is believed to be the 

most promising region. 

* Random Sampling: to evaluate each of the subsets, a random sample of solutions 

are obtained from each subset and used to estimate the performance of the region 

as a whole. 

This method uses partitioning to divide the design space into regions that can be 

analyzed individually and then aggregates the results from each region to determine how to 

continue the search, that is, how to concentrate the computational effort. In other words, the 

NP method adaptively samples from the entire space of possible feature subsets and 

concentrates the sampling effort by systematic partitioning of this space. 

To implement the partitioning, the NP method maintains in the &-th iteration what is 

called the most promising region, that is, a subregion ç % that is considered the most 

likely to contain the best solution or feature subset. This most promising region is partitioned 

into a given number of subrogions and what remains is aggregated into one region called the 

surrounding region. Thus, a disjoint collection of sets covering the entire feasible region is 

considered. The subrogions and the surrounding region are sampled using random sampling, 
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and the sampling information used to determine which region should be the most promising 

region in the next iteration. If one of the subrogions contains the best solution, this region is 

now selected as the new most promising region and is, in the next iteration, partitioned into 

smaller subrogions. If the surrounding region contains the best solution this is taken as an 

indication that the last move might not have been the best move, so the algorithm backtracks 

to what was the most promising region in the previous iteration. This partitioning creates a 

tree of subsets that we refer to as the partitioning tree. The distance of the current promising 

region from the top of the tree, which corresponds to the minimum number of iterations 

it takes to get to this region, we refer to as the depth of the region. Ones a maximum depth 

region is reached, that is a region that will not be partitioned further, the algorithm 

terminates. In the context of feature selection problem, this maximum depth will be equal to 

the number of features that are considered for either inclusion or exclusion from the selected 

set. 

As opposed to purely heuristic optimization methods, the NP method guarantees that the 

optimum solution is eventually found [Shi and Olafsson, 2000]. Furthermore procedures 

have been developed that allows us to specify a probability, say 90% or 95%, and terminate 

the algorithm when the probability that a good solution has been selected exceeds this value. 

Here a good solution is defined as a solution that has a performance that is within certain 

distance, called the indifference zone, of the optimal performance. As the algorithm 

terminates at the maximum depth the algorithm is set up to assure that the first 

maximum depth region visited is a good region with the desired minimum probability. The 

key to this result is to guarantee in each iteration of the algorithm that the correct move is 

made with a minimum probability (y, which can be calculated numerically based on the 

desired final probability Y of terminating correctly and the number of levels in the 

partitioning tree. To make the correct selection with probability at least y, it can be shown to 

be sufficient to obtain JV samples from each region, where 

^ M 
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Here # is the indifference zone, A(y/) is a function of the desired probability yf, and a" 

is an estimate of the sample variance in the region. Thus, up to a constant the amount of 

computational effort needed is proportional to the sample variance. The derivations of these 

results for the case where the performance has to be estimated using simulation can be found 

in [Olafsson, 2003], that also contains further analysis of the behavior of the algorithm. 

Equation (3.2) does provide us with an important motivation for the importance of high 

quality partitioning, which is the main topic of this proposal and is discussed further in the 

next subsection. 

3.2.2 Importance of Partitioning 

The selected partition imposes a structure on the feasible region. When it is done in such 

a way that good solution as clustered together in the same subsets, then those subsets are 

selected by the algorithm with relatively little effort. On the other end of the spectrum, if the 

optimal solution is surrounded by solutions of poor quality it is unlikely that the algorithm 

will move quickly towards those subsets. This can be made more rigorous using equation 

(3.2) above, which shows that the amount of computational effort is directly proportional to 

the variance and implies we should attempt to cluster together similar solutions. 

Another concept that is useful for shedding light on the importance of partitioning is the 

overlap between subsets. Assume a subset c X contains the optimal solution whereas 

does not. What we are interested in is the amount of computational effort required to 

correctly select Define 

, t, \ I I -1 a E X, : /(%) < min^,j. /(;y) | (3.3) 

nn ' Mg I 

The smaller the overlap, that is the larger the value of equation (3.3) above, the fewer 

samples are needed from each region. Furthermore the number JV(A^) of uniformly selected 

samples required to select A^ with probability at least y, grows exponentially in the overlap 

[Olafsson and Shi, 2001]: 
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log(l - ̂ ) 

log(r(XJ) 
1, ' r(%J = 0. 

(3.4) 
,  r (X )>0 ,  

From these theoretical results, we thus can formulate our goal with partitioning in two 

ways: (i) to partition such that the variance within each region is minimized, or (ii) to 

partition such that the overlap between the region that should be selected and the other 

regions is minimized. 

Incorporating structure into the partitioning is critical for the efficiency of the method 

and the theoretical derivations that justify this can be found in [Olafsson, 2003] and 

[Olafsson and Shi, 2001]. However, it is equally important to provide practitioners with 

methodology that can be implemented as automatic or semi-automatic system where the user 

does not need to develop complex partitioning methods and this our focus here. Now assume 

that we have some » decision variables z?, Then a generic partitioning method is to 

set one of the variables to each of its possible values at each level. Each order of the decision 

variables creates a different partition implying »! different partitions. Among those, the best 

partition is the one that has the least overlap between the region containing the global 

optimum and regions not containing the global optimum, or alternatively minimizes the sum 

of the variance in each region. Thus, the question of a good partition reduces to ranking the 

decision variables in order of importance in such a way that there is as little overlap as 

possible between regions containing the desired optimum and other regions. 

3.3 Problem Formulation 

In this section we formulate the general feature selection problem to be solved. The 

following notation will be used throughout: 

T : Training data,(instances). 

m : Number of instances (m = | T|). 

of an features. 

» : Number of features (» = | |). 

a : A specific feature (a e v4^'). 

/ : Performance measure. 
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: Optimal Performance. 

The feature selection process involves selecting a 'good' subset W c and a key 

question is how to define what makes a good subset, that is, the performance measure of the 

optimization problem. 

3.3.1 Performance Measures 

The main component in formulating the feature selection problem is selecting a 

performance measure. Depending on how this is done, feature selection methods may be 

divided into two categories: wrappers and filters. Wrapper methods use the accuracy of the 

resulting predictive model. Thus, to evaluate a subset c of features, a predictive 

model M(v4) is induced based on these features, and the accuracy of this model 

fl„W P-5) 

estimated, usually using a statistical procedure such as cross-validation or bootstrapping. 

This is an expensive evaluation and only applies for supervised learning. Thus, wrappers can 

only be applied in limited number of situations. Filtering methods, on the other hand, select 

features before any other learning algorithm is applied (if one is to be applied to all). Thus, a 

different performance measure must be specified and one of two techniques is applied: (i) 

some measures evaluate the performance of individual features and based on this a given 

number of the best features are used in the selected subset, whereas (ii) other measures 

evaluate the performance of an entire subset of features. Some of the possible measures 

include those based on the concept of entropy and those based on the concept of correlation 

between features. 

* Entropy-Based Measures: Individual features can be evaluated based on measures 

such as the information gain: 

/,,,,(7>) = /(T)-£(a). (3.6) 

where T is the training data, 7(7) is the expected information needed to classify a 

given instance in the training data, and is the entropy of the feature a e A 

The information gain has bias towards favoring features with large number of 

possible values. This can be addressed by using the gain ratio instead. 
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* Correlation-Based Measures: The correlation between features in a subset and 

with the class features (if present) can also be used to evaluate the quality of the 

subset. Intuitively, a good feature subset should correlate highly with the class 

feature, but have low correlation with each other. We can thus use the following 

performance function [Hall, 1998]: 

< •  ( , ) _  < 3 - 7 )  

1 }~  4k+k ( k - \ )p„  '  

where & is the number of features in the set ^4, ^ is the average correlation 

between the features in this set and the classification feature, and is the 

average correlation between features in the set A 

* Simplicity Measures: As one of the benefits of feature selection are smaller, 

simpler models that are easier to interpret, a measure can be introduced to 

evaluate this directly: 

-/jimp/"# ^ ' 

When choosing a wrapper or filter, the general consideration is that wrappers will give 

better performance when used with a supervised learning method, whereas filters are usually 

much faster. The NP-framework can be implemented as either a wrapper or filter, resulting in 

the NP-Wrapper and NP-Filter algorithm, respectively [Olafsson and Yang, 2001]. 

3.3.2 Integer Programming Formulation 

With the performance measures defined, we can now define the decision variables as 

Jl if the Ah feature selected, (3.9) 

(0 otherwise 

* E ^ \ The feature selection problem can then be formulated as the integer programming 

problem that maximizes a combination of the above performance measures subject to 

constraints 
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max 
select  

a, =Oorl, V%, 

jdecf le/ecf 
where and are the minimum and maximum number of features, respectively, in 

the selected set. We let A denote the entire feasible region. 

3.4 Feature Selection Methodology 

As a method for solving the feature selection problem, the NP method has numerous 

attractive properties and advantages over previously proposed methods. Depending on the 

method that is used to evaluate sample subsets, it can be implemented as either a filter or a 

wrapper algorithm, but always searches through the space of feature subsets by evaluating 

the entire subsets. On the other hand, it also incorporates methods that evaluate individual 

features into the partitioning to impose a structure that speeds the search. Its eventual 

convergence is assured and once terminated rigorous statements can be made. 

On the other hand, as it is computationally intensive compared to simple filters, this new 

methodology is particularly appealing when the feature selection is a critical task, such as 

when it is applied for obtaining structural information rather than as a preliminary step 

preceding a learning algorithm. 

3.4.1 Intelligent Partitioning 

The importance of partitioning as a means for imposing a structure on the search space is 

motivated above, and we now discuss an intelligent partitioning strategy when solving 

feature selection problems. For feature selection we let the decision variables (3.9) determine 

whether a feature is included in the set of selected feature or not. 

Thus given a current set of potential feature subsets, partition the set into two 

disjoint subsets 

G : a e v4}, 

= M e : a g yj}. 

(3.10) 

(3.11) 
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Hence, a partition is defined by a sequence of feature a,, ..., On, which determines the 

order in which the features are either included or excluded (see Figure 3.1). According to the 

goals of a good partition, the order of the features should be selected so that the features that 

best separate good feature subsets from poor sets should be selected Grst. In other words, if 

there is a feature that must be included in any high quality feature subset, or vice versa a 

feature that should not be included, it is advantageous to select this feature early. 

There are a number of strategies that have been developed to measure the importance of 

features, including the m/ôrmKzfioM gam which is obtained by knowing the value of each of 

the features [Quinlan, 1986], which is the method that we utilize here. 

Suppose a training set T of m instances contains ^^(a) instances where feature a is set to 

its y'-th value and the instance is classified as the z-th class. The total number of instances 

where a is set to they'-th value is then (a) = ̂ %,-?%(#), where c is the total number of 

classes. For this training set, the expected information that is needed to classify a given 

instance is given by 

All subsets 

Feature a, not 
included 

Feature #i 
included 

Feature <3% not 
included 

Feature 
included 

Feature not 
included 

Feature 
included 

Figure 3.1 Partitioning tree 
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r (3.12) 
A71 = -2]f,log2(A), 

i~l  

^ ̂ .(o) 
where = — is the faction of instances that belong to the z-th class. The 

information gain of a feature is the expected amount by which (3.12) is reduced if the value 

of the feature was known. It is calculated based on the enA-qpy of the feature 

^ (3.13) 
^(a) = ^9;(a) //a) 

y=i 

&(o) 
where v is the number of distinct values that feature a can take, and g = — , the relative 

m 

frequency of the y-th value in the training set, is the weight when the information function 

when a is set to itsy-th value: 

(3.14) 

M 

S t (d )  
where y?, = — is the proportion of instances with y'-th value of feature a that belong to 

the z-th class. Then the zn/ôrmafzoM gam of feature a is Gaz»(T,a) = /(T)-^(a) stated at 

(3.6). That is, the expected reduction in entropy that would occur if we know the value of 

feature a. Note that the feature with the highest information gain has the lowest entropy 

value. 

The maximum information gain, or equivalently the minimum entropy, determines a 

ranking of the features. Thus, we select 

a, = argminf (a), 

= argminE(a), 

a, = arg minf (a). 
^ 

where denotes the set of all features. The feature order deGnes a partition 

for the NP method that we call the emfropy ^arfzfzom. We note that we chose to consider 

entropy to define the partition due to past success of using this measure for feature selection. 
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However, any other method for evaluating the value of individual features could be used in a 

similar manner. 

3.4.2 Obtaining and Evaluating Feature Subsets 

In our description of the NP method above we identified two primary components of the 

method: partitioning and sampling. The former is addressed using the entropy partition, and 

the latter can be improved by incorporating similar ideas. 

There are two basic issues to be resolved when it comes to sampling, namely how to 

select samples from a given region, and how many samples to obtain. The amount of 

sampling can be solved by using formula (3.2) that has the benefit of guaranteeing the 

performance of the algorithm. How these samples are obtain, however, can be done either 

generically using uniform sampling, or by incorporating structure that assigns different 

probability to different feature subsets. The aim of the latter would be to select good feature 

subsets with higher probability and thus more quickly obtain a good estimate of the quality of 

each region. The idea of information gain can again be used. As features with high 

information gain are believed to be more useful, it is intuitively appealing to select those 

features with higher probability than features with low information gain. We thus propose the 

following approach for determining if a feature should be included in a sample. Assume that 

we are at the &-th iteration and as before let denote the selected sequence of 

features. As before, we let <f(&) denote the position or depth of /4(&) in the partition tree of the 

current most promising region. Recall that this implies that the first </(&) features have either 

been fixed as included or exclude in the current set of features. We then sample according to 

the following probabilities: 

GazM(T,a,) (3.15) 
Pro6[Select feature a,] 

# - max Gazn(r, a. ) 
AeW(*)+l nf 

for ; = 6f(&) + l,d(&) + 2,...,n . Here Gam(T^a) is the information gain of each feature 

calculated according to equation (3.6) above and > 1 is scaling constant. Note that all or 

none of the features can be included in the sample and the higher the information gain the 

more likely it is that a feature is included in a sample feature set. Furthermore, by selecting AT 
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> 1 there is a positive probability to select feature subsets that do not include the feature with 

the highest information gain, and the expected number of features included is inversely 

proportional to the value of AT. 

Finally, once sample feature subsets have been obtained, these, subsets must be 

evaluated. As is discussed in the introduction, how this is done defines whether the algorithm 

is a filter or a wrapper approach. An interesting property of the NP framework is that it can 

be implemented according to either approach and we thus consider two alternatives: 

* (NP-Wrapper) We can use the learning algorithm itself to measure the 

performance of a set, that is, the set performance function becomes 

/(/*) = Accuracy^), (3.16) 

where the accuracy depends on which learning algorithm is going to be applied. 

This is what is commonly referred to as the wrapper approach and we refer to the 

NP algorithm that used equation (3.16) as the 

* (NP-Filter) We can also use the correlation (3.7) among features to measure the 

performance of each feature set. The basic idea here is that good feature sets 

should correlate highly with the class feature, but have low correlation with each 

other. We note that this is a filter approach and hence we refer to it as the 7VP-

Fi/fer. 

We note that any learning algorithm can be used with a NP-Wrapper, and methods other 

than the correlation measure (3.7) that similarly evaluate feature subsets can be used for 

different variants of the NP-Filter. 

3.4.3 Convergence 

The key to the convergence of the NP method is the probability by which a region is 

selected correctly in each iteration. A sufficient condition for asymptotic convergence is that 

this probability of correct selection is bigger than one halt and to guarantee that a minimum 

probability is obtained, Olafsson (2003) proposed using a two-stage sampling procedure that 

determines how much random sampling effort, J), is needed from each region to 

guarantee correct selection with probability y within an indifference zone <? > 0. The two-

stage sampling also allows us to further analyze the convergence of the algorithm and 
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develop statements concerning the quality of the solution once maximum depth is reached. In 

particular, an expression can be derived for the probability of having found sufficiently good 

solution the first time maximum depth is reached: 

fro6{|/(A (A)) - /" |< > % (3-17) 

Where # > 0 is an indifference zone, that is a performance value difference that is 

considered insignificant, and 

T W <3'18> 

(1-y/)" ' 

where is the user selected minimum probability by which a correct selection is made in 

each iteration, and » is as before the total number of features. Sometimes it may be beneficial 

to stop the algorithm early, that is, before the maximum depth, n, of the partitioning tree is 

reached. Thus, we can specify a stopping depth (»)<«, define the objective function on 

sets of feature subsets as 

/(A(&)) = max /(a), (3.19) 
aeA(k) 

and equation (3.17) holds with Y replaced with 

(3 20) 
xp' _ r 

The two-stage sampling defines on of the two key components of the NP method. The 

other is partitioning, and as shown in Section 3.3.1, partitioning for the feature selection 

problem reduces to determining an order for the features and then the subregions correspond 

to either including a feature or not including a feature (see Figure 3.1). Thus, assuming that 

the current most promising region is some subset /4(&) c ̂  of the entire feasible region, then 

this subset is partitioned by fixing the next feature a in the order, that is, the subsets, ,4^ 

and (3.10), (3.11) respectively. The surrounding region is simply /^(A) = /4\/l(A). 

Each of these three regions is then sampled as discussed above and based on these samples 

the next most promising region is selected. In theory, the features can be selected in an 

arbitrary order, but in section 3.4.1 it is shown that an intelligent partitioning where features 

are ordered according to their information gain (3.6) performs significantly better, and this 
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partitioning is used in all of the numerical experiments below. Making the above discussion 

more specific, a NP-Filter algorithm is stated in section 3.4.4. 

3.4.4 NP-Filter Algorithm 

With all of the components of the NP for feature selection in place, we are in a position 

to state the proposed feature selection algorithms completely. The following algorithm can be 

used to implement the filter approach. Note that it uses a fixed number of »o samples to 

evaluate each region, starts with the set /4 of all possible feature subsets as the most 

promising region, and terminates when the depth of the most promising region has reached 

maximum, that is, it is a singleton. We also let be the best feature subset found and /" be 

the corresponding performance value, which is calculated according to equation (3.7) above. 

NP-Filter 

0. Select the constant AT > 1 for scaling the sampling distribution, and Mo, the number of 

sample points. Evaluate the entropy value of each feature and let a,,#:, . a* be the 

corresponding order of features: 

a, = argmin^(a), 

a? = argmin^(a), 

= arg minE(a). 

Set A(0) = /4, & = 0, and <f(0) = 0. Let ^4* = {} and set /* = oo. 

1. Partition /1(A) into two subregions and aggregate what remains into one surrounding 

region: 

/4i(&) = M E A(&) : e 

/42(A) = {v4 e A(A) : gv4}, 

^3 W - /4 \ /4(A), 
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2. From each of the three regions, independently obtain »o sample sets 

= 1,2,3, according the distribution 

fro6[Select feature a,] = G ( » ,) , for / = (f(A) + l,(f(A) + 2,.. 
AT - max Gam(T, a* ) 

he{d(k)+l, . . . ,n)  

Here Gam(T,a) is calculated according to equation (3.6). 

Aep 3. Obtain the best sample set from each region 

4L =arg min /W/), 
i=l,2, . . , ,nQ  

and /( ) is deGned according to equation (3.7). 

4. Select the next most promising region based on the sample results 

(a) If /(^)<min{/(^),/(^)},let/1(A+l) = /4i(A),^(A+l) = #) + l. 

I f /ML)</ ' ,k t  /  =/ML)  and  =^L-

(b) If /(^L) JGt /4(A+ l) = /^(A),(f(Afl) = #) + 1. 

I f /ML)</Je t  / '  = /WL)  and  

(c) Otherwise, let /4(& + 1) = ^(A) where a(/4(A)) is the superregion of /1(A), and 

^(A+l) = (f(A) - 1. 

If /ML) < let /' = Z(^L) and Y = ^-

5. If (f(t+l) = », stop and return as the best subset. Otherwise, let & = & + 1 and go 

back to Step 1. 

We emphasize that due to the possible backtracking in Step 4(c), the number of 

iterations taken by the algorithm is random, and as we will show in the numerical results, 

depends on the quality of the partition. Except for slight modifications to Step 3, the NP-

Wrapper is implemented in an identical fashion. We do therefore not present that 

implementation in detail, but rather illustrate this algorithm via an example. 

3.4.5 Complexity 

As the NP-Filter is a randomized algorithm with non-deterministic stopping time, 

analyzing complexity requires some care. Notice that the algorithm has two loops that may 



www.manaraa.com

31 

depend on the number of features (») and the number of instances (m). Let's start with the 

inner loop. Randomly selecting a feature subset normally requires one pass through the set of 

features and is thus 0(n). If the number of such sample subsets is fixed, that is, #((/,<?) is 

constant, then the entire loop is 0(m). However, if the more advanced two-stage sampling is 

used, the number //(y,#) of samples is random and depends on the structure of the space of 

all feature subsets. In general one can expect this to depend on both » and m, and for a 

specific problem have some expected value //(»,/%) = E|W((y, <?,%,?»)]. Thus the complexity 

of the inner loop is 0(//(»,#;) «). In the outer loop, a sample of instances v(#z) must first be 

obtained with complexity 0(v(m)). Finally, the number of iterations in the outer loop is 

stochastic because of possible backtracking. On the other hand, if there is no backtracking it 

takes some (/,&%,(«) number of steps where <&%,,,(») < », and the complexity of the entire 

algorithm is 0(<4,<%,(M)(v(fM) + //(»,#) n)). The functions and v(m) are entirely up to 

the designer of the algorithm, and one suggested strategy is to let both be square-root 

functions. We could also simply have fixed number of sample feature subset, that is, //(»,/») 

would be equal to a constant. Then the complexity reduces to 0(V»(V^ + %)), but since the 

variable number of sample subsets and backtracking have been dropped, this is now simply a 

heuristic with no performance guarantees. 

3.4.6 NP-Wrapper Example 

To illustrate the mechanism of the new algorithm we apply the NP-Wrapper using Naive 

Bayes as learning algorithm to the simple weather classification problem illustrated in Table 

3.1. There are 4 features (Ow?/oo&, Te/Mperafwre, /fwmK&fy, fFifndy) that can be used to 

predict a class feature that can take two values: play or no play. To determine the order in 

which features are selected for partitioning, we calculate the entropy of each feature 

according to equation (3.13) and get: 

jF(Owf/oo&) = 0.693, 

^Temperafwre) = 0.911, 

jE(^7Mw#fy) = 0.788, 

_E(?FzMù[y) = 0.892. 
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Table 3.1 Data for simple weather example 
OwfZoot Temperafwre #wmzW;fy WW/y 
Sunny Hot High False No play 

Sunny Hot High True No play 

Overcast Hot High False Play 

Rain Mild High False Play 

Rain Cool Normal False Play 

Rain Cool Normal True No play 

Overcast Cool Normal True Play 

Sunny Mild High False No play 

Sunny Cool Normal False Play 

Rain Mild Normal False Play 

Sunny Mild Normal True Play 

Overcast Mild High True Play 

Overcast Hot Normal False Play 

Rain Mild High True No play 

The expected information of the training set T is 7(7) = 0.94, so Owf/ooA has the highest 

information gain Gam(T, Owf/ooA) = 0.247, followed by with Gm»(7I 7/w/MzWzYy) = 

0.152 and PFznofy with G#m(T f^n^y) — 0.048, and Gnally Temperafwre has the smallest 

information gain of Gam(7] Tgmperafwrg) = 0.029. The resulting partitioning tree is shown 

in Figure 2, which also shows the final feature set for each maximum depth region, and the 

corresponding accuracy value when Naive Bayes is used as learning algorithm. As this 

problem is quite small we have chosen the maximum depth equal to the total number of 

features. The accuracy values in Figure 3.2, as well as those use by the NP-Wrapper, are 

calculated using 10-fbld cross-validation. 

First, note that the intelligent partitioning indeed imposes a useful structure on the space 

of feature subset that can be exploited by the random search. As outline above, we can 

measure this in two ways: using the variability of the accuracy or the percentage overlap 

between the set containing the global optimum and other sets. In particular, note that feature 

subsets with similar accuracy tend to be clustered together and the sample estimates of the 

best accuracy in each region will therefore have low variability. An extreme case is the set 

defined by all feature subsets containing Owf/ooA but not containing Tfw/mWffy, where every 

feature subset has the same accuracy and hence the variability is zero. Similarly, the overlap 
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is small and in the extreme case, the set containing and which includes the 

optimum, has no overlap with other subsets. Due to this imposed structure it can be expected 

that the random search quickly moves towards the optimal feature subset of {CWooA, 

We now illustrate a few iterations of the algorithm. We initialize the algorithm by setting 

/4(0) = ,4, and then partition and sample as follows: The most promising region ,4(0) is 

partitioned into two subsets depending on if we include or exclude the feature with the 

highest information gain, namely CWooA: 

/4i(0) = {,4 e ,4(0) : CWooA e v4}, 

/b(0) = {v4 e ,4(0) : Owf/ooA g v4}, 

Next we obtain samples from each one of those regions, according to the distribution 

(3.15) with AT - 1.2, which takes the information gain into account. For example, the 

probabilities that each of the three remaining features is included in a sample from A(0) are 

given as follows: 

0.029 
ProMSample includes TemperaA/rel = = 0.16 

1.2-0.152 

Pro6[Sample includes = 0.83 

ProMSample includes — = 0.26 
1.20.152 

Thus, for each sample obtained it has the following distribution 

Pro6[Selects {Owf/ooA, Zempemfwrg}] = 0.16 (1-0.83) - (1 - 0.26) = 0.02 

Pro6[Selects {Ouf/ooA, = (1- 0.16) - 0.83 - (1 - 0.26) = 0.52 

.Pro6[Selects {Ouf/ooA, = 0.16 - 0.83 - (1 - 0.26) = 0.10 
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Figure 3.2 Partitioning tree for weather example 
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Thus, each of the eight feature subsets has a positive probability of being randomly 

selected, but the probability depends on the perceived information gain of the features in the 

set. 

Say that we select one sample from each region, {Owf/ooA, fPindfy, Temperofwre} from 

/4](0) and {Hwmâ&fy, from A2(0). Since 

a tie must be broken. Given the goals of feature selection, we adopt the rule to break ties by 

favoring the smaller set, that is {#w/MzV#y, PFzWy}, so in the next iteration ,4(1) = /4z(0) and 

this new most promising region is partitioned into two subregion and what remains is 

aggregated into one set: 

/4i(l) = {^4 e ,4 : Owf/ooA g v4, /fwrniWify e v4), 

/4z(l) = M e : Owf/ooA g ^4, g /!}, 

/4j( 1 )  — A  \  >4(1). 

A quick glance at Figure 3.2 reveals that this move takes the search away from the optimal 

solution but by maintaining the surrounding region /4;(1) the algorithm is able to recover. 

Thus, we obtain one sample from each region, say, {/fwmWzYy, f#Wy} from A(l), {PPzWy} 

from ,42(1), and {CWooA, ffwmw&Yy} from ^(l). As the sample 6om /^(l) has the best 

accuracy, the algorithm backtracks and sets ,4(2) = /I. 

We are now back to where we started and this time we are likely to select different 

samples, say {Owf/ooA, ffumzWify, Temperofure} 6om /4i(2) and 6om 

,42(2). This time around 

Tg/Mperafwre}) - 64 > 57 

and the first subset is selected as the most promising region, that is, ,4(3) = A(2). It is 

partitioned into two subregion and what remains is aggregated as before: 

,4i(3) = {v4 e ,4 : OwfZooA g A //wmw&fy e >4), 

^2(3) = {^4 e : Owf/ooA g ,4, g v4}, 
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A|(3) = /4\/l(3). 

Now note that regardless of which samples are selected from these three regions, the sample 

from /4,(3) will have the highest accuracy, so ,4(4) = /4i(3). The new most promising region 

is partitioned into two subregions and what remains is aggregated into one set: 

/4i(4) = {{OwfZooA, Te/Mperafure}, {Ouf/ooA, T/wmzV/zfy, , 

/1z(4) = {{{OwfZooA, TgTT^perafwre}, {Owf/ooA, /fwmfWff}}}, 

/4](3) = /1\/1(3). 

Depending on the sampling, either A (4) or /4z(4) may be selected, but since there is no 

overlap between ^(4) and the good' region /4:(4), backtracking will not be warranted by the 

sampling. 

From these first four iterations, it is clear that the sequence of most promising regions 

moves towards the optimum with high probability and has the potential to recover from 

wrong moves via backtracking. As the algorithm progresses the sampling, and thus the 

computational effort, is concentrated where good feature subsets are likely to be found. Ones 

the maximum depth is reached, that is, the current most promising region is a singleton, the 

algorithm stops. Although simple, this example thus illustrates many key aspects of the NP-

Wrapper, including how it converges, how the computational effort is focused in most 

promising regions, the value of backtracking, and the paramount importance of an intelligent 

partitioning strategy. In the next section we evaluate both the NP-Wrapper and NP-Filter 

numerically. 

3.5 Evaluation of the NP-Wrapper and NP-Filter 

In this section we present numerical results for tests of the NP-Wrapper and NP-Filter 

when used to precede two classification algorithms, namely the Naïve Bayes algorithm and 

the C4.5 decision tree induction algorithm. These tests were conducted on a Dell OptiPlex 

GX200 with Intel Pentium m 662 MHz and Memory 64 Mb. The code is written in Java 

using the PPe&a machine learning software library (Witten et al., 1999) for implementation of 

the learning algorithms themselves. We used five data sets from the C/C7 .RepaHfory of 
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mac&zfzg /ewTMMg (Blake and Merz, 1998). The characteristics of these data sets 

are shown in Table 3.2, from which we note that the sizes range from 148 to 3196 instances 

and from 9 to 69 features. As both the NP-Filter and NP-Wrapper are randomized algorithms, 

we run five replications for each experiment and report both the average and the standard 

error. 

Table 3.2: Characteristics of the tested data sets 
Data Set Instances Features 

lymph 148 18 

vote 435 16 

audiology 226 69 

cancer 286 9 

kr-vs-kp 3196 36 

3.5.1 Value of Feature Selection 

Our first set of experiments addresses the effectiveness of feature selection using the NP-

Filter and NP-Wrapper for the selected data sets. As noted before, both Naive Bayes and 

C4.5 are used to induce classification models with the selected features. We measure the 

effectiveness along two dimensions. First we consider the accuracy of the models induced 

after feature selection compared to the corresponding models without feature selection, and 

second we consider how many features are eliminated, that is, how much smaller the models 

become when feature selection is employed. 

Table 3.3: Accuracy of Naive Bayes with and without feature selection 

Data Set 
NFS 

Accuracy Size 

NPF 

Accuracy Size 

NPW 

Accuracy Size 

lymph 85.1 18 85.4+1.0 10.6±2.1 86.2±0.8 9.2±0.8 

Vote 90.1 16 93.2±1.0 6.8±1.1 95.8±0.4 3.0±1.4 

audiology 71.2 69 71.2±1.5 27.4±3.2 75.0±2.3 23.0±3.9 

cancer 73.4 9 73.8±0.4 5.8±0.8 75.7±0.2 3.6=0.9 

kr-vs-kp 88.0 36 90.8±2.1 11.6=1.5 94.4±0.3 14.2±3.8 

The results for the Naïve Bayes classification method are shown in Table 3.3. Columns 

2-3 show the results for no feature selection (NFS), columns 4-5 show results for the NP-

Filter (NPF), and finally columns 6-7 for the NP-Wrapper (NPW). First looking at the 

accuracy we note that it actually improves or is no worse when we use feature selection, and 
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the models where classification is preceded by a NP-Wrapper have the highest accuracy. 

Indeed, there is an average of 1.5% improvement in accuracy when we precede a Naïve 

Bayes method with NP-Filter, and 4.7% when it is preceded with a NP-Wrapper feature 

selection. As discussed in the introduction, such improvement in accuracy may or may not 

occur when feature selection is employed. In particular, the performance of Naïve Bayes is 

known to be degraded by redundant features and it appears that those are effectively 

eliminated by both feature selection algorithms. What we do, however, always expect from a 

feature selection procedure is a significant reduction in the number of features, resulting in 

simpler and easier to explain models. Table 3.3 demonstrates this reduction. For example, 

when the NP-Filter is used, the 69 features of the 'audiology' data set are reduced to an 

average of 27.4 features, and when the NP-Wrapper is used, they are reduced to an average 

23.0 features. This is a significant simplification of the models. Across all the data set there is 

an average 52% reduction in number of features when we use the NP-Filter and an average of 

64% fewer features when we use the NP-Wrapper. We note that the NP-Wrapper performs 

better on both the accuracy and simplicity measures. 

Table 3.4: Accuracy of C4.5 with an without feature selection 

Data Set 
NFS 

Accuracy Size 

NPF 

Accuracy Size 

NPW 

Accuracy Size 

lymph 78.4 18 78.W.4 9.6±0.8 82.2±0.4 7.6&1.7 

vote 96.5 16 95.7±0.2 6.0±2.0 96.6±0.6 3.8±1.6 

audiology 77.4 69 75.0±1.6 25.0±4.3 79.9±1.1 14.0±2.7 

cancer 75.5 9 73.7±0.2 5.2±0.5 76.2±0.6 2.4±0.9 

kr-vs-kp 99.1 36 94.0±1.1 11.6±1.3 96.5±0.9 17.0±2.7 

We repeat the same experiments for the C4.5 decision tree induction algorithm, with the 

results reported in Table 3.4 according to the same format as before. Here the accuracy of the 

model is actually degraded somewhat when the NP-Filter is used (average of 2.4%), but 

using the NP-Wrapper still results in higher accuracy models than using all of the features for 

all but one of the data sets (average of 1.3%). The reduction in the number of features, 

however, is even higher than before, with an average of 57% and 68% reduction for the NP-

Filter and NP-Wrapper, respectively. 
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3.5.2 Comparison with Simple Entropy Filter 

The section demonstrates the value of using the NP-Filter and NP-Wrapper for feature 

selection, as this results in smaller but often higher accuracy models. However, the question 

arises if this performance is primarily due to properties of the NP method or because it 

incorporates an information gain ranking of features that is known to perform quite well in 

practice. Indeed, the selection of this approach to define the intelligent partitioning is based 

on the expectation that a reasonable ranking of features can be obtained by considering their 

information gain. 

Table 3.5: Accuracy of Naive Bayes with early termination of feature selection 

Data Set Depth 
NPF 

Accuracy Size 

NPW 

Accuracy Size 

EF 

Accuiac Size 

lymph 84.761.6 11.661.1 86.961.9 9.660.6 81.8 11 

vote 93.0±0.5 6.8=0.8 95.060.6 4.861.3 89.9 10 

audiology Max 69.760.7 28.6±3.3 73.661.1 30.063.0 75.2 43 

cancer 73.760.3 5.460.6 75.560.5 2.860.8 74.1 6 

kr-vs-kp 90.7±1.2 11.660.9 94.160.4 13.061.6 88.1 23 

lymph 83.960.7 10.660.9 86.460.3 11.261.1 81.8 7 

vote 93.260.4 8.261.1 94.760.8 3.8±0.8 92.4 6 

audiology Avg 71.062.7 24.863.5 74.862.8 26.664.3 73.5 26 

cancer 73.660.3 4.860.5 75.460.8 3.061.7 72.7 3 

kr-vs-kp 90.862.8 10.062.1 93.260.7 12.461.5 89.9 14 

lymph 85.760.7 11.861.6 86.061.8 9.460.9 80.4 2 

vote 99.061.4 5.462.5 94.360.5 5.860.5 95.6 2 

audiology Min 70.563.1 11.661.8 73.562.5 14.064.3 67.7 9 

cancer 73.760.4 4.660.6 74.360.9 4.261.6 72.0 1 

kr-vs-kp 90.^61.3 7.660.9 94.260.1 7.461.7 86.7 5 

To evaluate the contribution of the NP method versus that of simply using the 

information gain ranking, we compare the performance of the NP-Filter and NP-Wrapper 

with a filter that we refer to as the Entropy-Filter (EF). This filter simply selects the features 

with the highest information gain to be included in the model. Since the number of features 

used by the solutions found by the NP-Filter and NP-Wrapper is not fixed, a comparison of 

models with the exact same number of features is not possible. Furthermore, by fixing the 

number of features to be selected the Entropy-Filter only considers this many features, 

whereas by terminating the NP algorithms at maximum depth it is assured that every feature 
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is considered. Thus, for a fairer comparison we change the stopping criterion of the NP 

algorithms to that we terminate when a certain depth is reached, that is, after the given 

number of features has been considered for inclusion in the set. 

Table 3.6: Accuracy of C4.5 with early termination of feature selection 

Data Set Depth 
NPF 

Accuracy Size 

NPW 

Accuracy 

EF 

Size Accurac Size 

lymph 78.160.8 12.060.7 82.261.0 8.462.3 76.4 9 

vote 95.560.2 6.461.8 96.460.7 6.062.6 95.6 8 

audiology Max 76.460.9 28.663.5 79.661.7 27.464.2 77.9 36 

cancer 73.460.0 6.060.0 75.960.0 4.260.5 73.8 5 

kr-vs-kp 91.6±3.6 10.060.7 97.160.3 17.262.8 97.1 19 

lymph 79.161.4 10.661.1 81.160.5 9.060.7 78.4 6 

vote 96.660.2 8.261.6 96.360.5 7.261.9 95.6 5 

audiology Avg 74.662.9 27.262.2 79.561.6 30.462.5 77.9 22 

cancer 73.8±0.0 5.060.0 75.960.0 2.660.9 71.7 3 

kr-vs-kp 91.964.2 11.862.1 97.160.3 1.860.8 96.5 12 

lymph 78.7±0.6 9.060.7 81.160.5 9.861.9 73.7 2 

vote 95.560.3 6.261.9 96.360.5 7.261.9 95.6 2 

audiology Min 73.262.1 13.063.1 77.261.5 16.462.4 69.9 8 

cancer 72.961.2 4.660.6 74.161.1 3.261.3 69.6 1 

kr-vs-kp 87.266.2 6.660.9 96.260.9 13.263.1 90.4 4 

The same number of features is then used by the Entropy-Filter. As the data sets have 

varying number of features but we want a common testing procedure, we consider using 

approximately 60%, 40%, and 15% of the features in three different experiments. The results 

for Naïve Bayes are shown in Table 3.5. The first set of results for each data set uses 60% of 

features (Max), the second set 40% (Avg), and the third 15% (Min). From these results we 

see that the simple Entropy-Filter actually performs quite well, but on the average both the 

NP-Filter and NP-Wrapper perform significantly better with respect to accuracy. The average 

accuracy of the NP-Filter is better for all of the problems except the 'audiology' test set, with 

the average improvement ranging from 1.0% to 4.2%. The average accuracy of the NP-

Wrapper is better for all of the problems, and in 13 out of 15 experiments the average 

accuracy of the NP-Wrapper is better than for both of the other methods. The average 

improvement for each problem ranges from 2.2% for the 'vote' data set to 6.3% for the 
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'lymph' and 'kr-vs-kp' data sets, and there is no apparent pattern with respect to the size of 

the problems. 

The same results for the C4.5 decision tree algorithm are shown in Table 3.6. The results 

here are similar, except that the NP-Filter performs relatively worse, with an average 

improvement for only three out of the five problems, namely for the 'lymph', 'vote', and 

'cancer' data sets. Again, the NP-Wrapper has the best performance for 13 out of 15 

experiments and the average improvement over the Entropy-Filter ranges from only 1% for 

the 'vote' data set to 7% for the 'lymph' data set. 

Table 3.7: Average speed using Naive Bayes (milliseconds) 
Data Set Depth NFS NPF NPW EF 

Full 114 5313 6113 N/A 

lymph 
Max N/A 3954 3833 120 

lymph 
Avg N/A 2557 2628 120 

Min N/A 1190 853 112 

Full 164 11541 13341 N/A 

vote 
Max N/A 8096 8711 180 

vote 
Avg N/A 5416 5350 178 

Min N/A 1791 1915 154 

Full 370 124205 127769 N/A 

audiology 
Max N/A 88125 77452 322 

audiology 
Avg N/A 52583 43256 297 

Min N/A 16049 16387 252 

Full 119 2390 2888 N/A 

cancer 
Max 

Avg 

N/A 

N/A 

1679 

1232 

1987 

1064 

124 

124 

Min N/A 573 431 126 

Full 886 410682 515299 N/A 

kr-vs-kp 
Max 

Avg 

N/A 

N/A 

272552 

160109 

315520 

192314 

1294 

1298 

Min N/A 50278 63697 1262 

The improved accuracy obtained by using the NP algorithms, and especially the NP-

Wrapper, does of course come at a price, which is increased computational time. In Table 3.7 

and Table 3.8 we report the amount of computational time (in millseconds) used by each of 

the algorithms for all of the experiments reported above. For each of the data sets, the first 

line reports the time used for the experiments reported in Table 3.3 and Table 3.4 for no 
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feature selection (NFS), the NP-Filter (NPF) and NP-Wrapper (NPW). The next three lines 

report the time used for the experiments reported in Table 3.5 and Table 3.6 for the NP-Filter 

(NPF), NP-Wrapper (NPW), and Entropy-Filter (EF). 

Table 3.8: Average speed using C4.5 (milliseconds) 
Data Set Depth NFS NPF NPW EF 

Full 304 5476 28929 N/A 

lymph 
Max N/A 4210 14188 270 

lymph 
Avg N/A 2774 9514 276 

Min N/A 1402 2912 240 

Full 392 11685 41708 N/A 

vote 
Max N/A 8238 22178 356 

vote 
Avg N/A 5588 13890 302 

Min N/A 2017 5454 222 

Full 1076 127100 327725 N/A 

audiology 
Max 

Avg 

N/A 

N/A 

92225 

54246 

172884 

111969 

845 

709 

Min N/A 16622 32048 488 

Full 373 2650 8142 N/A 

cancer 
Max 

Avg 

N/A 

N/A 

1985 

1538 

4877 

2940 

303 

284 

Min N/A 801 1031 188 

Full 4558 430171 1836724 N/A 

kr-vs-kp 
Max 

Avg 

N/A 

N/A 

276450 

189066 

614206 

382934 

3509 

2794 

Min N/A 54348 101643 1772 

From these results we see that using the Entropy-Filter takes the least amount of time, 

followed by using no feature selection at all. Thus, even though using the Entropy-Filter adds 

a step to the process, this is more that compensated for by the faster induction of the 

classification model that occurs when fewer features are employed. The NP-Wrapper takes 

by far the most amount of computation time and the NP-Filter falls between the NP-Wrapper 

and no feature selection. Thus, as stated before, the NP algorithmic approach is primarily 

appropriate when significant computational time can be devoted to obtain high quality 

feature subsets that are to be used on their own for structural information or can be used 

repeatedly for classification or other learning. If speed is the primary concern, the much 

simpler Entropy-Filter is superior. 
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3.5.3 Importance of Intelligent Partitioning 

From the last subsection we know that the high accuracy obtained using the NP-Filter 

and NP-Wrapper is not completely explained by the use of an information gain ranking. 

Thus, conversely, we can ask how much of these good results is due to the generic NP 

framework itself and how much can be contributed to the intelligent partitioning scheme 

developed in this dissertation. To address this, we compare NP algorithms using the 

intelligent partitioning to NP algorithms using all other possible ways of partitioning. Since a 

partition is defined by the order in which features are either included or not, this implies 

considering all possible orders of the features. 

Table 3.9: Accuracy of intelligent partitioning in NP-Wrapper using Naive Bayes 
Data Set Accuracy 

Intelligent Best Worst 

1 90.860.3 91.0 86.4 

2 95.9±0.0 95.9 94.3 
vote 3 89.060.0 89.0 87.4 

4 90.060.3 90.1 85.1 

5 95.660.0 95.6 92.0 

1 75.960.0 75.9 72.7 

2 75.760.0 75.9 72.7 

cancer 3 75.860.2 75.9 73.1 

4 72.860.3 73.1 70.6 

5 75.960.0 75.9 72.0 

In particular, we use a complete enumeration of ail partitions to find the best and worst 

one, and compare those to the intelligent partitioning. Since the number of ways in which the 

features can be ordered is »! where % is the number of features, a study of even the smallest 

test problem would involve considering 9! = 362880 different partitions. This is prohibitively 

time consuming and we thus modify our data sets so that we first draw a sample of 7 features 

and then apply the NP algorithms. Note that we still have to evaluate 5040 different 

partitions. To assure the sampling does not introduce a bias we repeat the process five times, 

each time drawing an independent sample of 7 features. For those experiments we restrict 

ourselves to the 'vote' and 'cancer' data sets and we only consider the NP-Wrapper with 
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Naïve Bayes classification. Results for other configurations are similar and are omitted here 

for brevity. 

Table 3.10: Speed of intelligent partitioning in NP-Wrapper using Naive Bayes 

Data Set Computation Time 

Intelligent Slowest Fastest 

1 3812 20370 2814 

2 3515 19408 2153 
vote 3 3371 35080 2784 

4 3690 18046 2774 

5 3433 17375 3094 

1 2740 14050 1382 

2 2624 16013 1372 
cancer 3 2664 20390 1342 

4 4969 25226 1362 

5 2642 6920 1372 

In Table 3.9 the prediction accuracy of the models using intelligent partition, and the 

best and worst partition found using enumeration are reported. We note that the accuracy 

found using the intelligent partition is very close to the optimal. In particular, for half of the 

problems the intelligent partitioning always results in the same accuracy as the optimal 

partition, and for the other half the performance is within one standard deviation. On the 

other hand, we note that partitioning poorly results in feature subsets that have significantly 

lower accuracy but even for the worst possible partition the NP method is still able to obtain 

fairly high quality subsets. 

In addition to the accuracy, we also compare the computational time used by the NP-

Wrapper if different partitioning schemes are used, These results are reported in Table 3.10 

and we see that again using the intelligent partitioning results in performance that is fairly 

close to the optimal, although this time there is more different than with respect to accuracy. 

In particular, the intelligent partitioning takes, on the average, 36% and 75% longer than the 

best, for the 'vote' and 'cancer' data sets, respectively. On the other hand, the worst partition 

takes, on the average, 6.24 and 5.32 times longer than the intelligent partitioning, for the 

'vote' and 'cancer' data sets, respectively. Thus, we can conclude that the NP-Filter is 

capable of compensating fairly well for poor partitions in terms of obtaining accurate models, 
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but this occurs at the expense of using very long computation time. The intuitive reason for 

this is that any NP algorithm can compensate for mistakes, that moves in the wrong direction, 

by backtracking, but frequent backtracking is time consuming and will slow the search 

significantly. We conclude that a good partition is important with respect to both obtaining 

high accuracy models and in the time it takes to find the appropriate feature subsets, and of 

the two the latter is by far the most significant. Finally, we note that the difficult of obtaining 

the optimal partition is in general equal to solving the problem itself However, our results 

show that very high quality partition can be obtained efficiently with the new intelligent 

partitioning method. 

3.6 Comparison with Other Feature Selection Methods 

Genetic algorithms (GA) are similar to the NP method in that they use a randomized 

search strategy to explore the set of alternatives, in this case all possible subsets of features. 

They have also been shown to perform well for the feature selection [Yang and Honovar, 

1998]. Genetic algorithms thus provide a useful benchmark for comparing the performance 

of the new methodology. 

These GA comparisons use Naive Bayes as the classifier. The maximum depth for the 

NP-Filter is taken to be the minimum depth as explained in Section 3.5.2 above, and as 

before 5 replications are run for each algorithm. The NP-based algorithms and the GA 

algorithms are allowed to run for the same amount of time and the GA parameters were 

selected for best overall performance. Thus, NP and GA are compared only in terms of 

solution quality, that is model accuracy, and the size of the selected subsets. 

The first experiments compare the NP-Filter with GA search that uses the same 

evaluation criterion, that is, a corresponding GA-Filter. The results are reported in Table 

3.11. The accuracy of the sets obtained by the two algorithms appears to be quite similar. 

Although the average accuracy obtained by NP-Filter is strictly better for all five of the test 

sets, the difference is only statistically significant for the 'vote' data. The difference in 

performance may be explained by the fact that the NP-Filter tends to select slightly larger 

feature subsets for all but one of the data sets. 
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Table 3.11 Comparison of NP and GA Filters. 

Data Set 
NPF 

Accuracy Size 

GA Filter 

Accuracy Size 

lymph 85.7±0.7 11.861.6 84.361.3 9.861.1 

vote 99.061.4 5.462.5 94.361.3 3.861.3 

audiology 70.563.1 11.661.8 69.660.9 9.062.3 

cancer 73.760.4 4.6-0.6 73.660.2 5.661.1 

kr-vs-kp 90.761.3 7.660.9 89.861.4 4.861.3 

A similar comparison with the NP-Filter and a corresponding GA-Wrapper is reported in 

Table 3.12, and the results are similar to the filter results. The NP-Wrapper has higher 

accuracy for three out of the five data sets, the GA-Wrapper is better for one, and the two are 

tied for the 'cancer' data set. However, none of these differences are statistically significant. 

Table 3.12 Comparison of NP and GA Wrappers. 

Data Set 
NPF 

Accuracy Size 

GA Filter 

Accuracy Size 

lymph 86.061.8 9.460.9 84.961.6 12.060.7 
vote 94.360.5 5.860.5 95.160.8 5.661.5 

audiology 73.562.5 14.064.3 72.061.7 38.069.3 

cancer 74.360.9 4.261.6 74.360.6 5.061.4 

kr-vs-kp 94.260.1 7.461.7 92.460.7 19.363.1 

We conclude that the new methodology is a promising alternative and is certainly 

competitive to other methods such as GA that produce high quality feature subsets. However, 

we do not expect the NP-based methods to outperform GA for every data set. 

3.7 Scalability of Feature Selection 

In this section, we discuss the scalability of this approach in terms of its ability to handle 

increasing number of instances and increasing number of features. 

3.7.1 Instance Dimension 

As data mining is applied to every larger databases it becomes critical for any data 

mining method to be able to effectively deal with very large number of data objects or 

instances [Liu and Setiono, 1998]. One way of accomplishing this is to base the learning not 
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on the entire database, but on a randomly selected subset as in the NP-Filter, where in each 

iteration v4(&) is such a subset. This has been effectively used in data mining before, for 

example in the CLARANS clustering algorithm [Ng and Han, 1994]. The use of sampling of 

instances in data mining to improve scalability can be also found in many researchers' works. 

However, by using random sampling there is a danger in introducing a new bias into the 

learning and it is therefore essential to explicitly account for the noise introduced by 

sampling. 

The NP method was originally conceived for simulation-based optimization and is 

therefore naturally consistent with using performance estimates that are noisy due to 

sampling. Indeed, in the NP-Filter, a new set v4(&) of instances is sampled in each iteration in 

such a way that this set is independent of the previous sets: v4(0), ,4(1), ..., v4(& - 1). Thus, if 

the new instances indicate an erroneous decision has been made the backtracking feature of 

the NP method enables the algorithm to make corrections, thus correcting the potential bias. 

The question still remains as of how large of a portion of the database is needed by the 

NP method. In particular, as the proportion is decreased and more backtracking is required 

then as some point the computational inefficiencies of backtracking will outweigh the 

savings obtained by using fewer instances. In particular, the expected complexity of the 

algorithm may increase (see Section 3.4.5 above). 

To evaluate these questions empirically, we apply the NP-Filter three well known data 

sets that are described in Table 3.2. We evaluate the estimated accuracy as well as the 

computation time when either 2%, 5%, 10%, 20%, 40%, 80%, or 100% of the instances is 

used by the NP-Filter. For example, when testing the 'vote' data with 20%, we set v(435) = 

0.2 - 435 = 87 instances. Other parameters are set as follows. The sampling effort is constant 

= 5 so (y and need not be specified, the stopping depth is maximum depth </,&%,(%) 

= », the order a[i], op], . ., 4[n] is determined by the information gain. 

The results are reported as average and estimated standard deviation over five 

replications, and are shown in Table 3.13. First note that the desired speedups in the 

algorithm are indeed achieved. By using 10% of the instances rather than 100% of the 

instance, the computing time is reduced by 71%, 13%, 39%, 93%, and 28% for the five data 

sets, respectively. Due to very high variance, however, we cannot say that this difference is 
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significant for the 'audiology' data set. Even though we accomplished the speedup, the 

accuracy (performance) was not significantly sacrificed for the all data sets. In the case of the 

'kr-vs-kp' data set, the accuracy even increased. These are encouraging results. These results 

illustrate that sampling of instances is a reasonable way to improve the scalability of the NP-

Filter with respect to large number of instances. However, the effectiveness of this approach 

will in general depend on the particular data set being analyzed. 

Table 3.13. Effect of using fraction of instance space 
Data Set Fraction Accuracy Speed (millisec) Backtracking 

100% 93.510.4 282(%=93 o.oio.o 
80% 92.8±0.6 2766*224 O.OiO.O 
40% 92.210.5 1694=1=352 O.OiO.O 

vote 20% 92.611.3 10651174 0.610.5 
10% 92.411.0 816H67 1.6=1=2.2 
5% 91.911.7 9471515 13.2118.5 
2% 92.6±1.1 13141728 90.4=1=66.7 

100% 69.7H.9 4110513255 omo.o 
80% 70.211.9 58230±18616 78.8166.8 

audiology 
40% 70.212.3 38462±3451 108.6113.3 

audiology 
20% 70.5H.0 37280126368 235.01214.6 
10% 69.212.4 35840=1=14563 371.0=1=182.2 
5% 69.611.9 37025=4=14612 566.2=1=279.1 

100% 73.2±0.6 795183 0.010.0 
80% 73.610.3 793126 0.8=1=1.3 

cancer 
40% 73.0±0.8 647H42 1.8±1.5 

cancer 
20% 73.310.8 6401140 3.8±4.1 
10% 72.6=1.2 486189 7.413.4 

5% 73.110.4 9471456 78.4148.8 
100% 87.915.7 10746718287 0.010.0 
80% 87.317.3 87687=1=12209 0.010.0 

kr-vs-kp 
40% 89.813.1 4774114359 0.010.0 

kr-vs-kp 20% 86.H4.4 1938412727 0.410.9 
10% 91.H3.6 11482=1=2074 0.210.4 
5% 89.0H.2 72461809 1.813.0 
2% 88.612.3 774211892 25.8H5.6 

100% 83.3H.2 1734138 O.OiO.O 
80% 84.2H.3 2289=1=545 O.OiO.O 

lymph 
40% 84.3=2.0 15121344 2.613.8 

lymph 
20% 84.7H.0 1013H82 2.011.6 
10% 84.5H.1 12481385 30.0116.0 
5% 83.1=1=2.1 28104121543 265512122.0 

One more result we should note is that for all of the data sets except 'kr-vs-kp', the 

variability of the performance increases significantly. For example when looking at the 

'audiology' data set, although the average performance and the estimated standard deviation 
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do not change significantly (69.7% versus 69.6%) when using only 5% of the instances 

because of good features of the NP method, the estimated standard deviation of performances 

in an iteration goes up substantially as the sampling rate of the instances goes down, that 

results in high number of backtrackings (0.0 versus 566.2). For all data sets above, when the 

proportion of instances is very low, the variability of the performances gets bigger. This is to 

be expected as using fewer instances corresponds to the performance estimates used by the 

algorithm being more noisy. This issue will be dealt with in Chapter 4 in detail. 

3.7.2 Feature Dimension 

The ability of a feature selection method to effectively scale up when the number of 

features increases is very important, especially when the primary purpose of using feature 

selection is dimensionality reduction. 

The NP has a very natural mechanism to handle large number of features, namely the 

depth of partitioning tree. Table 3.5 - Table 3.8 show that even though we terminate the 

algorithm early, the accuracy is not sacrificed while the computational time is significantly 

reduced as described in the previous section. This issue will be also addressed in the Chapter 

4 in detail 

3.7.3 Adapting to New Features 

Another important scalability property is the ability of the data mining algorithm to 

effectively adapt to the introduction of new features. That is, assuming that a solution has 

already been obtained and a new feature is introduced (for example with a new product being 

added to an auction system), then can the problem be solved faster than by simply starting 

from scratch. 

In the NP-Filter, the simplest approach would be to simply add the new feature to the set 

of features that have not yet been fixed by the partitioning and select it as soon as warranted. 

This approach seems highly scalable. There is insignificant overhead and minimal 

interruption for the algorithm. There are, on the other hand, a couple of potential drawbacks 

to this approach. First, when a new feature is added the performance of existing subregions 

may change and thus, the current most promising region may not be the one that should have 

been selected. This should not be a serious drawback, however, as backtracking should 
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automatically correct any such errors. Secondly, it may be that the new feature should have 

been selected higher up in the tree. Again, the effects of this are not clear and backtracking 

always has the capability of moving up to the appropriate spot in the tree and rectifying the 

problem. However, these corrections may cause significant amount of backtracking that 

increases the computation time. 

Following this discussion, we evaluate three options for dynamically adding a new 

feature to an existing solution: (i) Prune the tree up to the level at which the feature would 

have been fixed (according to its entropy value), and start over from there; (ii) add the new 

feature at the lowest depth without interrupting already fixed features; and (iii) start the 

algorithm over in which case the feature will be fixed as all others according to its 

information gain. Note that the last option 'Lowest Depth' requires no disruption to the 

current partitioning tree. Numerical results for three data sets adapted from the 'vote' data 

set, illustrating these three strategies are reported in Table 3.14. In each of these sets one 

random feature is held back, the NP-Filter applied to the remaining set and the random 

feature then added. As before, we assume that the selected feature subsets are to be used by 

the Naïve Bayes algorithm and the reported accuracy is the estimated accuracy in this case. 

The parameters for this problem are as follows; 

« = 435 

m = 16 

=5 

d(,*,)(») = 16 

v(») = 435. 

All numbers are reported as average and estimated standard deviation from five 

replications. From these results it is clear that in terms of accuracy all strategies are 

indistinguishable. Thus, a selection between strategies can be made exclusively based on 

computing efficiency. The hypothesis is that the proposed strategies can improve the amount 

of computing time needed from the benchmark of simply starting all the calculations over 

then a new feature must be accounted for. 
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Table 3.14: Dynamically adding a new feature 
Data Set Strategy Accuracy Speed 

Start Over 92.7±0.4 12396±151 
Set 1 Correct Depth 93.0±1.3 4204±88 

Last Depth 92.8±1.1 1312±24 

Start Over 93.4±0.9 12625=1=286 

Set 2 Correct Depth 93.3±0.8 5678=1=134 

Last Depth 93.0±0.8 1308=1=21 

Start Over 93.7±L4 12207=1=94 
Set 3 Correct Depth 93.2=t=0.7 7336=94 

Last Depth 93.4±1.7 1304±33 

Indeed, the data supports that both strategies are capable of such improvements. The 

strategy of using part of the current tree and inserting the new feature in its proper order 

according to its entropy value reduce the computing time by 66%, 55%, and 40%, 

respectively. On the other hand, by simply adding the new feature at maximum depth, the 

computing time can be improved by an order of magnitude starting over. With computing 

times of 1312, 1308, and 1304, this approach also has the most predictable computing time. 

Thus, we conclude that implementing this strategy will greatly enhancing the scalability of 

the algorithm when applied in dynamic environments. 

3.8 Summary and Discussion 

We have developed a new optimization based approach to feature selection that can be 

implemented as both a filter and a wrapper. The new approach falls within an optimization 

framework that in previous work has been shown to have desirable convergence properties, 

such as asymptotic convergence and guarantee of being with a certain distance of the 

optimum with a given probability after a finite time stopping criterion is satisfied. Our 

numerical results show that the new method performs quite well on several test problems. 

Using a new optimization-based feature selection methodology called the NP-Filter, we 

have also demonstrated its scalability. Numerical results show that using sampling is 

potentially a very effective way to deal with large number of instances as the NP-Filter can 

use backtracking to correct any bias that may arise and random sampling. Finally, due to the 

partitioning that fixes one feature at a time as either being included or not, new features can 
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be dynamically accounted for with computing time that is an order of magnitude faster than 

starting over. 

However, some potential for the scalability of the NP feature selection method can be 

found in this chapter. As stated previously in the section, we showed that the NP feature 

selection method has a potential to handle large number of instances by using static random 

sampling. However, some questions remain about systematic ways for improving scalability 

using random sampling, which is the focus of Chapter 4. 
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4 SYSTEMATIC APPROACHES TO SCALABLE FEATURE 

SELECTION 

4.1 Introduction 

The ability of a feature selection method to effectively scale up when data mining is 

applied to every larger databases is very important. In this chapter we evaluate the accuracy 

and computational time of the NP-Filter as functions of both the number of features and 

number of instances using both synthetic data sets and realistic data sets. Numerical results 

are presented to show that using sampling is a very effective way to deal with the large 

number of instances as the NP-Filter uses backtracking to correct any bias that may arise, It 

is reported that the NP-Filter may be vulnerable to a rapid increase of the computation time 

for the increasing number of features. However, as stated in Chapter 3, the feature dimension 

scalability of NP feature selection methods can be achieved by controlling the depth. Even 

use of very small depth (e.g. 15%) does not lose an acceptable accuracy level with significant 

reduction on the computation time. Strictly speaking on the scalability for a large number of 

instances, even though random sampling is a good strategy for scalable feature selection on 

the instance dimension, questions on if an optimal solution for a size of instance samples can 

be found and how many samples are required for minimizing the computation time of the 

algorithms need to be more investigated. 

Based on the those results, we develop two systematic approaches to apply random 

sampling to improve the scalability of the NP-Filter in terms of its ability to handle the 

increasing number of instances. All iterations in the nested partitions (NP) method employ 

random sampling approach that takes samples of instances instead using all training data set. 

A random sampling procedure could use the fixed number of samples in the Static NP or a 

different number of samples in each iteration according to some legitimate criteria, which is 

called the Adaptive NP and addressed in a later section. Here the main issue is how many 

random samples should be used. Small samples may reduce computational time to calculate 

performances of a feature subset but increase performance variability of the subsets that may 

require more random samples. Therefore, it is very important to find an appropriate amount 
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of samples to improve scalability without sacrificing the accuracy of a finally selected feature 

subset. 

Most prior research on scalability can be broadly grouped into two categories, namely 

efficient search and data partitioning as described in the literature review chapter. For a fast 

search, heuristic based algorithms were proposed with approximate solutions. Even though 

some optimization based algorithms were proposed, they had to employ approximation for 

compromising expensive time complexity to find an optimal solution. On one hand, instead 

of focusing on the algorithm search, the data partitioning approach was introduced by 

dividing the data horizontally (instance sampling) or vertically (feature selection). We use the 

random sampling approach for rendering the feature selection process scalable that has been 

frequently used in many research articles. 

The remainder of this chapter is organized as follows. Firstly scalability issue on the NP-

Filter using synthetic data set and real data set is addressed. Then both analytical and 

heuristic approaches are presented to find a solution for sample sizes in two different ways. 

Numerical results are also presented to show how the methods affect the performance in 

terms of mainly speed and accuracy. Finally empirical comparisons including the Static NP-

Filter are reported to show which strategy works well to improve scalability. 

4.2 Scalability of NP-Filter 

In this section we consider the scalability of the new methodology, the NP-Filter. In 

particular, we evaluate the accuracy and computational time as functions of both the number 

of features and number of instances. Ideally, a highly scalable algorithm would achieve linear 

growth in the computational time while maintaining the acceptable accuracy level. 

4.2.1 Scalability Using Synthetic Data Sets 

For testifying which factor affects the scalability of the NP method we use synthetically 

generated test data where both the number of instances and number of features are control 

parameters. In particular, we generate test sets with 50,100, 200,400, and 800 instances, and 

50,100, 200,400, and 800 features using the following approach. To create a single instance 

(, a value for the class feature 7, is generated according to a uniform distribution over the 

interval [-3,3], The value for each of the other features is then generated according to : 
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+(!/); I(4.1) 

where ^ is the amount of correlation between feature y and the class feature, and 2) is drawn 

from a unit normal distribution, y = 1,2,...,», z = l,2,...,m. For each of the test problems, 10% 

of the features are highly correlated with | |>0.9, 40% have correlation 0.3 ^ |< 0.9, 

and 50% of the features do not correlate highly with the class feature, that is | | < 0.3. The 

NP-Filter, followed by Naive Bayes classification model induction, is run five times for each 

of those test sets. 
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Figure 4.1. Accuracy as a function of features for the five instance settings. 
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Figure 4.2 Variance of accuracy as a function of features for the five instance settings. 
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Let's first consider the scalability with respect to the number of features. Figure 4.1 and 

Figure 4.2 show the accuracy and its variance as a function of number of features for the five 

instance settings (50 to 800 instances). From these results we conclude that there is no 

significant change in the accuracy obtained as the number of features grows. The plotted 

variances of accuracies also imply that significant differences do not happen most of the 

time. 
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Figure 4.3. Computation time as a function of features for the five instance settings. 
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Figure 4.4 Variance of speed as a function of features for the five instance settings. 
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The results for computational time shown in Figure 4.3 and Figure 4.4 report that the 

time and its variance grow rapidly as the number of features increases as clearly shown in 

400 and 800 instance settings, and indeed it appears to demonstrate exponential growth. 

Thus, although quality is not lost as the problem size increases, the time it takes to achieve 

this quality increases quickly and the NP-Filter is therefore somewhat lacking in terms of 

scalability with respect to the number of features. 
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Figure 4.5. Accuracy as a function of instances for the five feature settings. 
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Figure 4.6 Variance of accuracy as a function of instance for the five features settings. 
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Figure 4.7. Computation time as a function of instances for the Ave feature settings. 
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Figure 4.8 Variance of computation time as a function of instances for the five feature 
settings. 

Looking at the scalability of the NP-Filter as a function of number of instances, Figure 

4.5 and Figure 4.6 report the accuracy and its variance of accuracy obtained as a function of 

the number of instances. An interesting observation from these figures are that the solution 

quality actually improves as the problem size increases, which is not entirely surprising as 

more instances imply that more data is available to induce a model with high accuracy. Now 

turning to the computational time shown in Figure 4.7 required to achieve this accuracy, As 

opposed to the rapid growth in computational time seen when the number of features 
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increases, the time here grows only linearly, thus implying that the NP-Filter is scalable with 

respect to the number of instances. 

In the NP method, a new set of instances is sampled in each iteration in such a way that 

this set is independent of the previous set. Thus, if the new instances indicate that an 

erroneous decision has been made, the backtracking feature of the NP method enables the 

algorithm to make corrections, thus correcting the potential bias. The question still remains 

as of how large of a portion of the database is needed by the NP method. As the proportion is 

decreased, more backtracking is required because at some point the computational 

inefficiencies ofbacktracking will outweigh the savings obtained by using fewer instances. 

4.2.2 Performance Variances for Instance Sampling Rates 

The NP-Filter corrects mistakes made due to noisy performance estimates by 

backtracking when the error is discovered, so we would expect to see more backtracking 

when fewer instances are used. This is indeed supported by the data in Table 3.13, as the 

average number of backtracking moves increases for each of the data sets. Even though it is 

expected that the speed would become slow as the proportion of instances decreases, the real 

time increases at the very lower proportion point after it decreases for a while. Excessive 

backtracking may slow down the NP-Filter. The main reason for excessive backtrackings is 

that performance variance increases as the number of instances used decreases. The 

following tables report the results that also illustrate that sampling of instances is a 

reasonable way to improve the scalability of the NP-Filter with respect to large number of 

instances. 

Performance variance would be affected by both instance and feature variability. In 

order to show the relationship between performance variances and only instance sampling 

rates with excluding the feature variability, the following test configuration is needed. For the 

test, the NP-Filter with modified data sets that contain 7 randomly selected features and 1 

class feature is used. In each iteration, enumerated feature data sets (127 = 2^ - 1) are 

evaluated by the correlation filter and the best one is selected as a current optimal subset 

(solution). At the end of the last iteration, the variance of performances of best solutions is 

calculated to determine if there is a relationship between performance variances, and each 

case experiment is replicated 5 times. It is expected that the variance is zero when the 100% 
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instances are used and variances with lower portion of instances increase. If we use 100% 

instances, the algorithm always selects an optimal solution from the enumerated data sets in 

all iteration, which results in zero variance of performances. On the other hand, if we sample 

fewer instances, the selected best one at each iteration would be different. Thus the variance 

would not be zero. 

Table 4.1 Performance variances for sampling rates of instances. 

Sample Rates 100% 80% 60% 40% 20% 10% 5% 2% 

votel 0.0 1.4 4.0 5.0 8.1 17.3 27.5 N/A 

vote2 0.0 6.6 9.1 16.4 28.0 38.3 41.9 N/A 

audiology 1 0.0 1.5 4.2 6.1 16.9 33.4 48.8 94.3 
audiology2 0.0 1.2 1.9 5.3 14.9 25.6 58.7 91.1 
audiology 3 0.0 0.9 2.4 4.9 10.8 28.7 58.2 185.4 

cancer 1 0.0 0.7 2.1 4.3 19.2 49.1 109.7 N/A 
cancer! 0.0 0.5 1.8 4.5 14.7 52.7 104.7 N/A 
cancer] 0.0 0.6 1.4 3.0 13.9 53.4 150.8 N/A 

kr-vs-kp i 0.0 0.2 0.4 0.9 2.8 5.9 8.9 14.9 
kr-vs-kp2 0.0 0.1 0.1 0.2 0.5 1.2 2.7 6.3 
kr-vs-kp3 0.0 0.1 0.1 0.2 0.5 1.2 2.7 9.5 

lymph 1 0.0 1.0 5.4 10.6 15.4 21.4 25.6 58.8 
lymph2 0.0 1.7 4.4 7.8 15.8 26.9 29.2 67.8 
lymphS 0.0 1.4 1.5 4.3 11.9 30.0 37.2 78.1 
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Figure 4.9 Performance variances for instance sampling rates. 

As shown the Table 4.1, as the sampling rate decreases, the variance of performances 

increases exponentially in most cases. The increasing rate of variance is very high at the very 
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low sampling rate of instances in most data sets. For example, the variances at 80% and 2% 

sampling rates are 0.9 and 185.4 in one of modified 'audiology' data sets. 

From the results above, an importance question arises. What is the optimal proportion 

point of instances that minimizes the computational time of the NP-Filter? That question is 

addressed in the following sections. However, the effectiveness of this approach in general 

depends on the particular data set being analyzed. 

4.3 Analytical Approach 

In this section we consider an analytical approach to improve the scalability of the new 

methodology using the results on the relationship between performance variances and 

instance sampling rates. In order to make a feature selection process scalable, random 

sampling for instances can be a good strategy as shown previously. Small samples can reduce 

computational time of the algorithm, but there is a trade-off since that small data set may 

produce undesirable accuracy of a finally acquired feature subset. 

4.3.1 NP/Rinott-Filter 

In this section, the NP/Rinott-Filter algorithm is stated, which is an enhanced version of 

NP-Filter. The NP/Rinott-Filter, which is derived from the NP/Rinott [Olafsson, 2003], 

employs Rinott's two-stage ranking-and-selection procedure to ensure that the correct best 

sample set is selected with a correct selection probability. It was originally developed for 

simulation-based optimization by combining the benefits of global random search and 

statistical selection, and then may be considered an iterative ranking-and-selection algorithm. 

Based on the NP-Filter described in the previous chapter, we let TV) denote the number of 

sample sets in /4/(&), y = 1,2, 3.,y-th subregion in the &-th iteration and ^ = /(/*/ ), where 

,4/ and /( ) are defined according to equation (3.7) be the sample performance of z-th set in 

the y-th region. The two-stage ranking-and-selection procedure takes »o samples Erst, and 

then determine the total number JV) samples required from the y-th region using that 

information. This number JVj is selected to be sufficiently large so that the selection for 

correct subregion is made with probability at least P* and an indifference zone f > 0. Based 
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on the NP/Rinott-Filter method, the predicted best sampling rate of instances is derived 

analytically, considering the selection probability and indifference zone. 

NP/Rinott-Filter 

Aep 0 - 2. Same as NP-Filter 

iSYep 2 - 1. Let z the number of sample sets in each region. 

If i = »o continue to 3. Otherwise let /-;'+! and go back to 2. 

2-2. Calculate the first-stage sample means and variance 

(4.2) 

and 

Mg -1 

Aep 2-3. Compute the total sample size 

TVy (A) = maxx +1, 
(4.4) 

where g is the indifference zone and A is a constant that is determined by »o 

and the minimum selection probability P* of correct selection [Rinott, 1978]. 

2-4. Obtain 7V/(&) - no more samples in each region. 

3 - 5. Same as NP-Filter. 

Note: When obtaining the best sample set in each region, the newly created sample sets must 

be considered. 

As described in the previous chapter, the NP/Rinott method guarantees to find an 

optimal solution probabilistically with the two-stage sampling efforts [Olafsson, 2003]. If a 

variance of performances in one region in the first sampling stage is large, it would be very 

liable to need the second sampling stage for enhancing possibility to find a best solution. 

Thus, reducing the performance variance can be a key point to find a best proportion of 

instances. Figure 4.10, graphical version of the results of Table 3.13 in Chapter 3, shows that 
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10% of instances is a best sampling rate of vote data set if we use static sampling method in 

every iteration. After the computational time decreases for a while as the instance sampling 

rate decreases, the time increases at the very lower proportion points, 5% and below due to 

backtrackings. 
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Figure 4.10 Computational time for instance sampling rates (data set 'vote'). 
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Figure 4.11 Number of backtrackings on instance sampling rates. 
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As shown in Figure 4.11, it is plotted that number of backtrackings abruptly increases at 

the 5% and 2% sampling rate points that cause the excessive computational works. Abrupt 

increase of backtrackings implies that the sampling rate should be made before the steep 

increase point of backtrackings, which matches the result of the minimum point of 

computational time in Figure 4.10. Those two figures provide the motivation for how to find 

the best solution. 

4.3.2 Formulation 

The best proportion of instances for minimi zing the computational time of the 

NP/Rinott-Filter algorithm is derived in this section. First we define an optimization problem 

to find such a solution but partially employing heuristics and describe the reason why the 

heuristics should be used. To state those clearly, the following notations for expressing them 

are stated. 

Notation: 

T: Total computational time, T, + 7^ + + ... + 7^, for &= 1, 2, ..., 

: Total number of iteration, 

TV = 7V\(&) : Number of sample feature sets at each iteration A, 

7 : Number of sample instances, 

» : Total number of features, 

m : Total number of instances, 

: Sample proportion of instances (sampling rate), =7/ 

P : Probability of correct selection, 

g : Indifference zone. 

If we define the total expected time of NP/Rinott algorithm as 7T[7], _E[7] can be 

straightforwardly stated a product form of the total expected number of iterations of the 

algorithm and the expected time of iteration &. 



www.manaraa.com

65 

jF[T] = ^.[f] % If] (4.5) 

Fortunately, we already know that the total expected number of iterations of the 

NP/Rinott algorithm [Olafsson, 2003] is given as follows: 

E A K i -
2f  -1  (X)^(2 f ' -1 ) '  

d *  

\ J  » •  '  
v l -P  J  y  

< which can be approximately bounded by f [AT] 

Therefore, we are only interested in the expected time of iteration & that can be affected 

by the performance variability and sampling rate of instance as stated in the previous 

sections. The expected time of iteration &, | AT], can be stated as a product form of the 

expected number of feature sets and the expected computational time of each feature sample 

set in the &-th iteration. 

| AT] = 2[TV* | f] - E[T* | AT, ] (4.6) 

Unfortunately it is difficult or impossible to find an optimal solution of (4.6) because 

^[TV* | A"] is a function of E[.S^(&)] as stated in (4.4), and ,$'(&)] does not have an 

analytically explicit relationship with the instance sampling rate (or number of instances). 

However, alternatively, we may End a solution using the trade-off between _E[TV* | f ] and 

| TV* ] that was noted at the end of the section 3.7.1. Since from the previous section it is 

known that the variability can be represented as the number of instances and ^[TV* | AT] 

would increase as the number of instances decreases while | TV* ] would decrease as 

shown in Figure 4.12. Therefore, rather than trying to solve (4.6), we propose to solve the 

following problem. 

Minimize A - 2[TV* | AT] + (1 - ̂ ) - | TV* ] (4.7) 

Our objective is to minimize both iT[7V* | AT] and | TV*] simultaneously. Since 

E[TV* | AT] is a decreasing function, but | TV*] on the other hand is an increasing 
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function, and the units of both expected number and time are different, we create the 

objective function as stated in (4.7) by using an weight A which should be determined by the 

experimenter. Furthermore, since as we pointed out earlier, | AT] does not have an 

explicit analytical form, we replace | A"] by a function of E[.S^(&)] that should be 

heuristically found from the relationship with the instance sampling rate. Now we derive a 

solution for the problem above based on the following assumptions. 

Assumption 1. An instance is uniformly sampled, that is ~ U(0, 1). 

Assumption 2. The expected calculation time of each feature sample is directly proportional 

to the number of instances. 

The number of features contained in the sample set may affect the calculation time. 

However, we discard the consideration on the number of features for simplicity. Thus, the 

number of instances only affects the calculation time of each feature sample set in (4.8) and 

the calculation time of each instance is a unit constant time. 

= = (4.8) 

Assumption 3. The constant Mo in the equation (4.4) is chosen sufficiently small, i.e. 

< TVy (A) so that we always take (&) = — of samples from each region in one 

iteration. 

Now we need to know the expected number of feature sample sets from each region. For 

handling this problem, we need to consider the second stage sampling mechanism of 

NP/Rinott. Since A and g are constants in (4.4), only 5"^ (A) is a random variable. Thus, the 

expected number of feature sample sets in each iteration, 

From the fact that if the number of instance samples decreases, the performance 

variability of feature sample sets increases as stated in the previous section, thus, we know 

that the expected number of feature sample sets increases in (4.9). 
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Figure 4.12 The expected number of feature sets and the expected calculation time of each 
feature set on variabilities and number of instances. 

As noted earlier, it is unlikely that we find the distribution function of S^(&) 

analytically since 5^(t) is a function of sample performance which does not have an 

analytically explicit form in terms of m. Thus, we find the probability distribution function 

empirically from tests that can determine the relation between ,S^(&) and /. The test is 

designed to calculate performance variances for various sampling rates of instances. There 

are two terms that can affect the variance, which are the number of feature sample sets, TV* 

and the sampling rate of instances, Thus, in order to know the relation between 5^ (&) and 

only, we generate enumerated feature sample sets for one region at each iteration, calculate 

the performances, pick up one best performance, and Gnally calculate the variance of the best 

performances at each iteration. The test results are reported in Table 4.1. As shown in Figure 

4.9, there is an exponential relationship between performance variance and instance sampling 

rate. 

Assumption 4. The relationship between performance variance and instance sampling rate is 

exponentially distributed. E[5^(&)] = for ci > 0, > 0. 

Based on the (4.7) and the assumptions, the restated problem is as follows. 
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Min Cost (R) = /I c,e + (1 - Cg m 

Subject to 
0 < j , < l ,  o < a < i ,  
h, £, Cq , Cj 3 C2 ^ 0. 

If we take the first derivative, 

dCasf A 
c, C; e ^ ̂  + (1 - /I) Cg m = 0 

dR g-

we can derive the best solution in (4.10). 

j? = 1 
- In 

(1 - A) Cg g" 7M 

A c, -C] 

(4.10) 

Since 
A A' -c2-S c, c^ e ' > 0, R is the minimal point. The value of A can be 

chosen by an experimenter according to the preference. As A grows closely to 1, becomes 

larger to reduce the performance variance, while becomes smaller as A decreases to 0. 

The indifference zone, g and selection probability, f * that determines the value of A should 

be also determined by the experimenter. If f is small and f * is large, the sampling rate 

would be large. Otherwise it would be small. However, there is the interval that the value of 

have to be in because 7 is less than or equals to /», that is is greater than 0 or less than 1. 

1 <— In 

Cg - f - m 

(1 - A) Cg - ^ /M 

A C, C; 

or A < 

< 0  

Co - g 7M 

(Cg m + c, -Cj) (c„ m +A" c, c^ e ^) 

The analytical formula on the optimal instance sampling rate in the NP/Rinott-Filter is 

evaluated and compared with other approaches in the later sections. 

4.3.3 Evaluation of Analytical Solution 

By intuition, we could guess that small would reduce the computational time of the 

feature selection process. However, since the small value of can cause a large variance of 

performances that leads to the excessive computation time. Thus now we evaluate the 

formula (4.10) numerically with constants that can be determined experimentally and 
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estimated using a nonlinear programming solver in the case of the and c?. Then the 

predictive best solution, is evaluated in the NP/Rinott-Filter with a static sampling 

approach, that is we use a fixed number of instances, _R*x in every iteration. 

Since the relationship between performance variance and instance sampling rate is 

exponentially distributed, it has a nonlinear form with constants ci and <%. Those constants 

are investigated by the least square method in LINGO, which is an well-known software. 

Using the modified data sets for each 5 data set in Table 4.1, we estimate the values of the 

constants that are reported in Table 4.2. 

Table 4.2 Estimated constants from the data. 

Data set è\ c2 

vote 36.8 6.8 

audiology 360.4 33.8 

cancer 402.4 19.7 

kr-vs-kp 17.6 11.0 

lymph 94.7 13.3 

Other constants are chosen by the experimenter, and A, f, P* are set as follows. The 

constant A has three different settings, 0.25, 0.50 and 0.75, each of which represents which 

factor should be more importantly considered for the minimization. For example, the value, 

0.25 implies that we minimize more intensively the expected computation time of each 

feature sample set. On the other hand, the value 0.75 implies that we concentrate on the 

minimization of the expected number of feature sample sets. The constant g, an indifference 

zone on the optimal solution is set to 0.01 and 0.05, and P* is set to 0.75, 0.90 and 0.95, 

which is experimentally believed that those values provide desirable results in the NP/Rinott 

algorithm. Note that the value A is a derived value based on the »o and f *, and co can have an 

arbitrary value depending on the experimenter. In this test, it is set to the same value as ci for 

simple calculation. 

In order to reflect various settings on the numerical tests, 18 combination problems for 

each data set were tested, that is, 18 different instance sampling rates were generated for the 

test using the equation (4.10). The NP/Rinott-Filter algorithm ran 5 times with full depth and 
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Naïve Bayes classifier to calculate accuracy of the Gnally selected feature set. The Table 4.3 

- Table 4.5 refer to the averaged accuracy, computational time and number of backtrackings 

with standard deviations respectively. 

Table 4.3 Accuracies of NP/Rinott-Filter on various R*. 

A = 0.25 A =0.50 A = 0.75 

Sample Sample Sample 
Data s  f  Rates (%) Accuracy Rates (%) Accuracy Rates (%) Accuracy 

0.75 27 92.711.9 32 93.911.7 38 92.810.5 

0.01 0.90 31 93.2±1.0 37 93.011.1 42 93.610.3 

0.95 34 92.510.6 39 93.7H.4 45 93.911.2 
vote 

0.75 10 91.710.9 16 93.2H.4 21 92.511.2 

0.05 0.90 15 93.0±0.8 21 92.1H.6 26 93.011.2 

0.95 18 92.2H.0 23 92.610.3 29 92.8H.4 

0.75 38 70.7±1.2 44 69.712.2 49 69.412.9 

0.01 0.90 43 72.311.2 48 69.4H.8 54 71.512.1 

0.95 45 68.811.8 51 71.511.8 56 69.312.8 

0.75 22 69.712.9 27 69.812.0 33 71.3H.8 

0.05 0.90 27 71.312.1 32 70.811.7 38 72.1H.8 

0.95 29 70.412.1 35 69.612.7 40 67.912.9 

0.75 34 73.311.1 40 73.210.8 45 72.912.1 

0.01 0.90 39 73.010.7 45 73.410.6 50 73.510.3 

0.95 41 73.410.5 47 73.610.2 53 74.010.4 

0.75 18 73.310.5 24 73.510.6 29 73.210.7 

0.05 0.90 23 73.110.4 28 73.011.6 34 73.610.2 

0.95 25 73.710.4 31 73.410.9 36 73.H0.6 

0.75 19 87.315.7 25 87.H6.0 30 86.517.8 

0.01 0.90 24 89.215.6 29 84.916.4 35 91.012.3 

0.95 26 89.811.2 32 89.211.9 37 88.910.7 

0.75 3 89.010.5 8 88.3H.0 14 89.8H.9 

0.05 0.90 7 89.610.9 13 90.512.8 19 90.111.1 

0.95 10 89.812.3 15 89.614.0 21 87.813.5 

0.75 28 84.611.0 34 83.911.1 39 85.1H.1 

0.01 0.90 33 84.910.8 38 84.110.8 44 84.210.6 

0.95 35 84.111.0 41 83.7H.2 47 83.011.2 

0.75 12 83.512.0 17 83.7H.9 23 84.411.4 

0.05 0.90 17 84.310.9 22 83.511.9 28 84.H1.5 

0.95 19 85.310.9 25 83.510.6 30 85.011.0 

As reported in Table 4.3, even though 18 different instance sampling rates were 

evaluated according to constant setting, there would be no significant difference in accuracies 

since the Rinott's two stage sampling efforts support problems caused from the fewer 
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number of instances. However, the computational time of data sets containing the fewer 

number of instances takes longer than that of larger size data sets. Small number of instances 

cause easily large differences on performances, which would results in additional feature 

sample sets in the second sampling stage, more calculation works for those additional sets, 

and possibly the more backtrackings in the algorithm. For example, in 'vote' data set, we 

hardly find any significant difference in accuracies for three sampling rates, 27%, 31%, 

Table 4.4 Computation time of NP/Rinott-Filter on various R . 

a = 0.25 À = 0.50 A = 0.75 

Data S / 
Sample 
Rates Speed 

Sample 
Rates Speed 

Sample 
Rates Speed 

0.75 27 5660±1525 32 548512185 38 528211351 

0.01 0.90 31 1208917129 37 1404713906 42 1555613314 

vote 
0.95 34 2245213111 39 2634716966 45 28743110879 

vote 
0.75 10 857161 16 7991119 21 10271152 

0.05 0.90 15 913181 21 12371248 26 12091145 

0.95 18 13291241 23 1350193 29 16161244 

0.75 38 1620941111523 44 114892132789 49 157615193509 

0.01 0.90 43 3643221138453 48 4629021320380 54 4236181136529 

audiology 
0.95 45 6310911476810 51 5714141232038 56 3779471177592 

audiology 
0.75 22 31972110584 27 2887216644 33 37100118299 

0.05 0.90 27 4431819151 32 48325138379 38 46513116672 

0.95 29 74852152994 35 46025117890 40 59431124863 

0.75 34 665171 40 7111149 45 8151165 

0.01 0.90 39 9631358 45 11251651 50 11631289 

cancer 
0.95 41 14881401 47 13331293 53 15021433 

cancer 
0.75 18 48H86 24 434125 29 473129 

0.05 0.90 23 478194 28 476134 34 542135 

0.95 25 474160 31 51H86 36 516134 

0.75 19 27407111133 25 3233615715 30 4072616399 

0.01 0.90 24 61012123175 29 74957124444 35 7222712929 

kr-vs-kp 
0.95 26 7831317547 32 9840813051 37 130727112512 

kr-vs-kp 
0.75 3 51891537 8 74001889 14 1424212055 

0.05 0.90 7 755111323 13 1179311186 19 1675811158 

0.95 10 951711278 15 1498512787 21 1974712289 

0.75 28 43481885 34 36991563 39 40111932 

0.01 0.90 33 977011960 38 801711760 44 953512355 

lymph 
0.95 35 1314812108 41 1270613216 47 1502111564 

lymph 
0.75 12 13951468 17 11251141 23 1053171 

0.05 0.90 17 13461463 22 12411100 28 12121101 

0.95 19 14761181 25 15921615 30 1320166 



www.manaraa.com

72 

and 34% while the computational time, 5660, 12089, and 22452 (milliseconds), for those 

cases is significantly different respectively as shown in Table 4.4. For other data sets, we can 

find very similar results. 

Table 4.5 Number of backtracks of NP/Rinott-Filter on various #*. 

A = 0.25 A =0.50 A = 0.75 

Data £ P" 

Sample 
Rates Backtracks 

Sample 
Rates Backtracks 

Sample 
Rates Backtracks 

0.75 27 2.4±3.6 32 1.612.5 38 O.OiO.O 

0.01 0.90 31 o.omo 37 0.010.0 42 0.210.4 

vote 
0.95 34 O.OiO.O 39 0.611.3 45 O.OiO.O 

vote 
0.75 10 0.610.5 16 0.210.4 21 0.410.9 

0.05 0.90 15 1.211.3 21 0.010.0 26 0.210.4 

0.95 18 0.210.4 23 0.811.3 29 0.210.4 

0.75 W
 

OO
 

149.81136.3 44 87.6149.2 49 153.21131.5 

0.01 0.90 43 175.8199.0 48 230.61113.1 54 161.6=73.6 

audiology 
0.95 45 148.01179.6 51 116.0189.8 56 77.0160.5 

audiology 
0.75 22 176.8155.0 27 128.8127.0 33 137.8179.5 

0.05 0.90 27 179.8148.2 32 181.61191.5 38 143.8175.5 

0.95 29 285.61224.2 35 145.6157.6 40 171.21115.5 

0.75 34 0.8H.3 40 0.210.4 45 4.817.5 

0.01 0.90 39 5.617.2 45 0.610.9 50 3.215.5 

cancer 
0.95 41 8.4114.4 47 0.410.9 53 0.811.3 

cancer 
0.75 18 8.214.4 24 2.413.0 29 2.613.6 

0.05 0.90 23 4.613.2 28 3.615.0 34 1.212.2 

0.95 25 4.413.8 31 3.613.8 36 1.011.7 

0.75 19 2.014.5 25 O.OiO.O 30 1.212.2 

0.01 0.90 24 1.012.2 29 1.212.2 35 O.OiO.O 

kr-vs-kp 
0.95 26 O.OiO.O 32 O.OiO.O 37 O.OiO.O 

kr-vs-kp 
0.75 3 2.213.3 8 0.410.9 14 O.OiO.O 

0.05 0.90 7 0.210.4 13 0.8H.8 19 0.410.9 

0.95 10 0.410.5 15 2.214.9 21 1.212.7 

0.75 28 6.414.8 34 2.2H.8 39 3.012.9 

0.01 0.90 33 4.211.5 38 1.4H.7 44 1.611.8 

lymph 
0.95 .35 2.813.3 41 1.613.0 47 3.015.7 

lymph 
0.75 12 29.6119.6 17 10.214.0 23 2.&k2.8 

0.05 0.90 17 11.8H0.5 22 10.816.3 28 2.612.5 

0.95 19 8.016.9 25 9.619.7 30 3.612.9 

Simply, we can explain the computation time (or scalability) of the NP/Rinott-Filter 

using three major factors under the condition such that it has an equal depth, which are the 

number of instances, performance variance, and the number of backtrackings. If we employ a 
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broad structure of the algorithm, the computation time of the outer loop of the algorithm can 

be explained as the number of backtrackings while the performance variance is related to the 

computation time of the inner loop. Those two factors, the number of backtrackings and the 

performance variance are strongly related to the number of instances as described earlier in 

that the small number of instances may lead to a large variance of performances and possibly 

large number of backtrackings. If we have a small performance variance enough not to 

require any additional feature sample sets in the second stage and the algorithm partitions 

correctly in all iteration, only the number of instances would affect the computational time. 

But in real the number of backtrackings and performance variance are also very critical 

factors for the scalability as reported in Table 4.5. Let's consider the 'audiology' data set 

problems, both the instance sampling rates, 54% and 56% report significantly different 

computation time, 423618 and 377947 milliseconds, even though the two sample rates are 

slightly different. The backtrackings occurs more frequently (161.6 versus 77.0) so that it 

takes significantly longer in the former case. From the result, it is inferred that the fewer 

instances may bring such frequent backtrackings. On the other hand, in 'cancer' data set, 

even though both 23% and 25%, even smaller difference between the two sampling rates are 

used, the computation time at 23% is somewhat smaller than that of 25% (e.g. 478 versus 

474). In this case, the number of backtrackings is not so different (4.6 versus 4.4). Thus we 

can say that large performance variances caused by fewer instances cause the excessive 

computation time. Therefore, in a word, we can conclude that the total computation time of 

the NP/Rinott-Filter depends on the number of instances, the number of backtrackings, and 

the performance variance as expected. 

4.4 Dynamic Sampling Approach 

In this section, we investigate a new approach to dynamically find a good instance 

sampling rate. This approach provides an alternative to the two-stage NP/Rinott-Filter. As 

described in the previous sections, the number of backtrackings is one of the critical factors 

determining the computation time (speed) of the feature selection process. Backtracking is 

necessary to correct mistakes, but many backtrackings directly affect the excessive 

computation time. In this algorithm, we consider only how to prevent backtrackings from 
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occurring. If performance variability is low, which implies large amount of instances or a 

high instance sampling rate is used, it is obvious that we can reduce the number of 

backtrackings. On the other hand, a high performance variance that can be regarded as a low 

instance sampling rate easily causes frequent occurrences of backtrackings. However, if a 

sufficient number of instances statically in every iteration of the algorithm to reduce the 

number of backtrackings, it would often require an overestimated amount of instances for 

even a small size of feature sets. Thus, if we change the number of instances (or instance 

sampling rates) adaptively based on the occurrence of backtrackings, that is, we use larger 

samples for the frequent occurrences of backtrackings and smaller samples for the rare 

occurrences, we can reduce the computation time of the algorithm. Based on this idea, we 

developed the heuristic algorithm named Adaptive NP-Filter. 

4.4.1 Adaptive NP-Filter 

This Adaptive NP-Filter uses same framework as the NP-Filter as well as dynamical 

sampling works to find a good instance sampling rate. Specifically if the percentage of 

backtrackings in last several iteration is greater than that of backtrackings in all iteration up 

to current iteration, we increase the sampling rate because that many backtrackings are 

undesirable. Otherwise the number of samples is reduced by the reason where we do not 

want unnecessary instances. 

Notation: 

TV : Number of iterations, TV = 1, 2, 3,..., 

last TV : Number of iterations performed last, 

M : depth (full depth is same as the number of features), 

h : Number of backtrackings for last TV iterations , 

a : Total number of backtrackings up to current iteration, 

a : Instance sampling rate, 

A„ : Step size on instance sampling rate, 

c : Constant, 
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Adaptive NP-Filter 

Initialize 0, last #= 0, 6 = 0, B = 0, % = 0, #, A^, c, set by an experimenter. 

Loop 
All procedures in one iteration are same as NP-Filter. 

If 6/last#>= c —, then R R + A„ / n, 

Otherwise, - A^ / ». 

Until M = the number of features (full depth is reached). 

It would be better that the values for last TV and c should be carefully chosen by the 

experimenter after some pilot tests because large last TV and c would make the algorithm's 

response for instance sampling rate changes insensitive. On the other hand, small values of 

the constants would make it very sensitive. As the depth approaches into the end, smaller 

amount of features in a set is needed, which means that the sampling rate converges to some 

point. Thus it is required that smaller amount of changes ( A„ / ») on the sampling rate should 

be applied as the depth of the algorithm increases. 

4.4.2 Evaluation of Adaptive NP-Filter 

The Adaptive NP-Filter is evaluated numerically on the same test problems before. For 

this test, several parameters and constants were set as stated in Table 4.6. In order to test 

several situation, 5% and 10% of features of original data sets as two last TV, 1.0 and 1.2 as 

two constant c, and 5% to 80% initial sampling rates of instances were used. For a step size, 

V is set to 0.2 which is believed by experimenter to be reasonable. The instance sampling 

rate is dynamically changed 0.01 to 0.99 based on the decision criteria until the full depth is 

reached. A moving average of the instance sampling rates is calculated for the rates of the 

last 5 iterations, which is chosen arbitrarily. Since the instance sampling rates fluctuate up 

and down frequently, it is hard to see a trend of the dynamic rates. Furthermore, even though 

the rate converges to some point Gnally, it is hard to accept that the point represents a really 
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converged point because it could fluctuate even right before the final iteration. Thus, the 

moving average may show more reasonable convergence for the sampling rate although it is 

a little rough. As a classifier, Naïve Bayes was used and for each case, the same tests were 

repeated 5 times. 

Table 4.6 Test configuration of Adaptive NP-Filter. 

Data set 
Number of 
Features 

last# 

5% 10% 
Initial# 

(%) 

vote 16 1 2 
5 

audiology 69 3 7 10 
cancer 9 N/A 1 20 

kr-vs-kp 36 2 4 40 

lymph 18 1 2 
80 

The following figures, Figure 4.13 - Figure 4.16, show moving averages of last 5 

iteration for instance sampling rates adaptively changed by the algorithm as the iteration 

proceeds. Each figure contains four different initial instance sampling rates, 5%, 20%, 40%, 

and 80%, representing two data sets, 'vote' and 'kr-vs-kp'. The results for other data sets are 

presented in Appendix B. 

As shown in Figure 4.13 and Figure 4.14, the moving average curve looks sensitive 

since small c and last # make more frequent decisions for changing the instance sampling 

rate and likely to change the rate. When it comes to the initial sampling rate, large initial 

sampling rate, for example 80% initial sampling rate, can easily make the algorithm 

terminated with rapid reduction of the rate since many instances hardly cause backtrackings. 

If we use larger step size enough to allow the algorithm to find a good solution or more 

iterations, it would converge to a lower rate point rapidly. On the other hand, small initial 

sampling rate, for example 5% initial sampling rate, shows a pattern to increase at the early 

phase, decrease for a while, and finally fluctuate with converging to a good instance 

sampling rate in most cases. It is shown that most cases in figures have a tendency that the 

instance sampling rates finally converge to a desired solution according as a low rate is better 

for scalability even though some problems are hard to be terminated early. 
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Figure 4.13 Moving averages of instance sampling rates of 'vote' data set with 4 different 
initial sampling rates, 5, 20,40, 80, c = 1.0, last TV= 1, and t = 5 (from the top). 
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Figure 4.14 Moving averages of instance sampling rates of 'vote' data set with 4 different 
initial sampling rates, 5, 20, 40, 80, c = 1.2, last TV-2, and & = 5. 
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One more interesting result is that the converged sampling rate is similar or a little 

smaller than the sampling rate found by the Static NP-Filter presented previously. For 

example, the predicted best solution of 'vote' data set found by the Static NP-Filter is 10%. 

The results in Figure 4.13 and Figure 4.14 except 80% initial sampling rate case show that 

the converged rates mostly fall in the range of 5% - 10%. This result should not come as a 

surprise because as the depth in NP increases, the size of a selected feature set gets smaller, 

which means fewer instances are needed naturally. 

Usually the adaptiveness can provide flexibility to the changing situation. If we do not 

meet a worst case situation that does not happen frequently in many practical applications, 

then we can find a solution on the sample size with much fewer samples than the required 

samples in the worst case [Domingo, Gavalda and Watanabe, 2000]. However, by requiring 

overestimated samples in the worst case that is calculated a priori, the Static NP-Filter takes 

fixed amounts of instance samples in every iteration and needs equally excessive 

computational works for even a small size of feature sample sets. Thus, it is intuitive that the 

converged sample rates are mostly smaller than that of the Static NP-Filter. It has been 

reported in many research articles that the adaptive (dynamic) sampling approach outperfbms 

the static sampling approach. 

The results for 'kr-vs-kp' data set also report a very similar pattern as those of 'vote' 

data set. The predicted best sampling rate by the Static NP-Filter is 5% for this data set. On 

one hand, the converged rates by the Adaptive NP-Filter are almost in a range around less 

than or very similar to 5% as shown in Figure 4.15 and Figure 4.16. This benefit of the 

Adaptive NP-Filter would help reduce the computational time while maintaining an 

acceptable level of accuracy. 

Now we evaluate the Adaptive NP-Filter in terms of accuracy and computational time. 

In order to find some performances such as accuracy and computational time, similar test 

configurations were applied, that is Naïve Bayes classifier and 5 times repetition, and the 

numerical results are reported in Table 4.7 and Table 4.8 (other results are reported in 

Appendix B) with the averages and standard deviations. 
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Figure 4.15 Moving averages of instance sampling rates of "kr-vs-kp' data set with 4 different 
initial sampling rates, 5, 20, 40, 80, c = 1.0, last TV = 2, and & = 5. 
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Figure 4.16 Moving averages of instance sampling rates of "kr-vs-kp' data set with 4 different 
initial sampling rates, 5, 20, 40, 80, c = 1.2, last TV = 4, and&= 5. 
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Table 4.7 Numerical results of Adaptive NP-Filter with c = 1.0 and last TV - 5%. 

Accuracy Speed Backtracks 

5 92.5H.5 12671402 49.2141.1 7.319.8 

10 93.110.4 433814368 303.41363.1 3.712.1 

vote 20 91.610.7 366213789 270.81366.5 2.010.8 

40 93.1H.1 366311482 240.4H47.7 1.610.2 

80 92.211.0 1067161 0.610.9 16.310.3 

5 71.312.1 36012129713 129.8H24.2 29.016.9 

10 70.413.0 2074811169931 1357.411240.2 23.119.0 
audiology 20 70.811.6 47781120390 167.6188.9 35.418.1 

40 69.012.5 2061101258237 944.211206.5 33.8114.0 

80 70.612.6 37078120248 79.4167.1 59.014.5 

cancer N/A 

5 86.612.4 712213167 13.818.9 4.114.2 

10 84.914.3 712211306 16.815.7 4.712.3 
kr-vs-kp 20 85.515.0 993216555 17.219.7 6.015.7 

40 87.214.7 1205417838 15.6110.6 5.415.4 

80 83.416.6 2620081512274 89.21194.5 27.9116.1 

5 84.3H.3 1079019759 658.21640.0 10.610.7 

10 83.710.9 13800111248 830.01699.8 15.6110.6 
lymph 20 84.3H.2 562514392 318.41282.5 11.818.0 

40 84.911.4 12193116855 701.4H041.6 7.413.9 

80 83.910.7 11071210 6.818.O 12.3H.1 

As shown in several previous figures plotting convergence pattern of instance sampling 

rates, when small c and last TV are used, it takes longer since it causes more strict criteria for 

determining instance sampling rate. Regardless of values of parameters, any significant 

differences on accuracies are hardly found. The computational time (speed) looks to be 

influenced by an initial sampling rate. For example, initial sampling rate, 5% and 10% of 

'vote' data set in the two tables takes least except rate 80% that should be excluded in this 

issue since high initial sampling rate would make rapid convergence without backtrackings. 

If we consider the 'audiology' data set and others, very similar pattern as the 'vote' data set is 

also detected. Furthermore, the finally converged sampling rate is ranged similarly but a little 

lower as the predicted best solution found by the Static NP-Filter. For example, the 

converged rate of 'vote' data set ranges from 5% to 10% approximately and mostly, 15% to 

35% in 'audiology', 13% to 25% in 'cancer', 4% to 9% in 'kr-vs-kp' and 10% to 20% in 
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'lymph' data set. Thus, if the algorithm starts with a similar sampling rate as the converged 

sampling rate, it takes less time. Otherwise, it takes longer. 

Table 4.8 Numerical results of Adaptive NP-Filter with c = 1.2 and last //= 10%. 

Data set 
Sampling 
Rates (%) 

Accuracy Speed Backtracks 
Converged 
Rates (%) 

5 92.5±1.0 9031587 19.4127.7 8.618.8 

10 91.7H.2 655177 7.213.5 6.914.9 

vote 20 92.210.5 663166 5.810.8 5.310.5 

40 91.811.5 8691194 6.014.7 9.918.9 

80 93.710.6 1490177 0.410.9 33.419.7 

5 71.914.1 53054114825 194.01137.2 15.1113.0 

10 69.013.6 26173112959 107.0158.1 31.919.3 

audiology 20 71.3H.5 44677119774 132.0169.1 39.512.8 

40 68.3H.5 31386110880 89.2146.2 43.019.5 

80 70.912.6 64686132568 111.41106.9 77.7H0.2 

5 73.210.9 5071153 20.8H4.2 12.919.7 

10 73.410.7 444198 13.416.3 14.H2.9 
cancer 20 73.410.5 8661502 47.6147.0 25.2123.9 

40 73.810.3 10071369 55.0136.4 22.4112.7 

80 74.110.5 523132 0.810.8 39.518.4 

5 88.015.0 783513419 5.6H.1 6.314.4 
10 86.&M.2 855&M984 6.413.8 6.815.1 

kr-vs-kp 20 86.214.4 13301111386 13.8112.2 9.319.4 
40 87.013.9 1510413659 5.412.8 7.613.3 

80 86.H5.5 60395113765 2.613.6 44.5113.2 

5 84.610.9 437313750 319.01359.8 20.113.3 

10 83.8H.1 244812326 155.81243.3 17.014.3 
lymph 20 84.911.4 320512952 217.61284.8 16.718.8 

40 84.110.9 9991113 8.013.4 16.415.2 
80 84.310.6 12401199 1.612.3 37.716.4 

It can be surely said that the Adaptive NP-Filter finds a good solution without 

unnecessarily trying to larger sampling rates and time consuming. 

4.5 Comparison 

In this chapter, two different approaches were developed and investigated in terms of 

scalability of feature selection process. It is obvious that one of the most important key issues 

is how fast we can find a reduced subset without much sacrificing accuracy. This section 
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deals with performance comparison of those approaches including the Static NP-Filter based 

on the least amount of computational time for each approach. 

Table 4.9 Comparison of three different scalability methods. 

Data set Approach Sample Rate (%) Accuracy Speed Backtracks 

Adaptive NP 6.9(10)±4.9 91.7H.2 *655177 7.213.5 

vote NP/Rinott 16 93.211.4 7991119 0.210.4 

Static NP 10 92.4H.0 816H67 1.612.2 

Adaptive NP 31.9(10) ±9.3 69.013.6 *26173112959 107.0158.1 

audilogy NP/Rinott 27 69.812.0 2887216644 128.8127.0 

Static NP 10 69.212.4 35839114563 371.01182.0 

Adaptive NP 14.1 (10)12.9 73.410.7 444198 13.416.3 

cancer NP/Rinott 24 73.510.6 *434125 2.413.0 

Static NP 10 72.611.2 486189 7.413.4 

Adaptive NP 2.4(10)10.8 88.3H.2 522511035 10.412.9 

kr-vs-kp NP/Rinott 8 89.011.0 *51891889 2.210.9 

Static NP 5 89.011.2 72461809 1.813.0 

Adaptive NP 16.4(40)15.2 84.H0.9 *9991113 8.013.4 

lymph NP/Rinott 23 84.411.4 1053171 2.012.8 

Static NP 20 84.7H.0 10131182 2.011.6 

( ) of Sample Rate in Adaptive NP represents initial instance sampling rate 

The Adaptive NP-Filter provides the best performance in terms of speed in three data 

sets, 'vote', 'audiology', and 'lymph', and the NP/Rinott-Filter takes the least time in two 

data sets, 'cancer' and 'kr-vs-kp' without sacrificing accuracy. On the other hand, the Static 

NP-Filter shows the worst performance. Thus, the results show that sampling fixed number 

of instances in every iteration for making scalable feature selection process can not be an 

excellent alternative, that is because it uses a same size of instances instead of fewer 

instances even in a high depth and it requires an undesirable size of samples. Even though the 

NP/Rinott-Filter also uses a static sampling approach, it can reduce time by controlling the 

number of feature sample sets applying the second sampling stage. These results imply that 

as the depth of the algorithm increases, a different sampling rate, that is the adaptive number 

of instances, should be applied. Synthetically, if we would like to perform a feature selection 
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process focused on the higher accuracy with a desirable speed, the NP/Rinott-Filter can be 

recommended. On the other hand, if we focus on the least computation time, the Adaptive 

NP-Filter can be effectively used. 

4.6 Summary and Discussion 

First we showed that the NP feature selection algorithm is appropriate for scalability of 

the number of instances. We have presented both analytical and heuristic approaches for 

scalable feature selection based on the new optimization-based feature selection methodology 

called the NP/Rinott-Filter and NP-Filter, and compared performances in terms of accuracy 

and computation time including the Static NP-Filter. Numerical results showed that the 

adaptive sampling approach is generally better than the other methods in terms of the 

computational time, and for even accuracy, the adaptive approach performed well comparing 

that of the NP/Rinott-Filter which performed best in terms of accuracy. Thus using dynamic 

sampling approach is a very effective way to deal with a large number of instances in the NP-

Filter or even other general algorithms with respect to speed (computational time). The 

NP/Rinott-Filter showed best performances in some test problems as well with respect to 

accuracy and speed even though it employs a static sampling approach. Hence, the Adaptive 

NP-Filter and NP/Rinott-Filter can be very good alternatives for a scalable feature selection 

under some conditions or preferences of an experimenter. 
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5 MIXED TYPE OF FEATURES 

5.1 Introduction 

The NP feature selection method uses the information gain to determine a partitioning 

order of features by evaluating quality of a feature. However, if we have a data set containing 

continuous valued features, we have to apply an appropriate discretization method to be able 

to make it nominal and apply the information gain. Even though many discretization methods 

have been introduced, it is difficult to know where boundaries should be drawn. 

In this chapter, we assume that we do not use discretization for continuous valued 

features, that is we use continuous values directly to evaluate the quality of features. Thus, 

after reviewing the previous discretization methods briefly, we employ 2 different methods in 

the NP-Filter, that is correlation based subset evaluator [Hall, 1998] and ReliefF feature 

evaluator [Kononenko, 1994], in order to deal with a mixed type of features, nominal and 

numerical data type. Those two methods are used to determine an order of features on 

partitioning evaluation. These methods will be evaluated and compared with information 

gain feature evaluator enabled by discretization and no feature selection (NFS) to address the 

effectiveness of feature selection using the NP-Filter for the selected data sets. Further, we 

investigate whether partitioning orders by the different feature quality evaluators may affect 

performances in the NP-Filter with Naïve Bayes, C4.5 and ^-nearest neighbor learners. 

Finally we perform a case study on an application that uses a mixed type of features in a 

data set. By applying ReliefF in the NP-Wrapper to handle numerical and nominal features in 

the data set gathered from an Internet auction system that facilitates reverse logistics [Ryan, 

Min, and Olafsson, 2001], we will construct the recommender system which can be 

effectively used in e-commerce systems. 

5.2 Discretization and Feature Quality Evaluators 

Discretization transforms values of a continuous feature into a finite number of discrete 

intervals based on criteria. Discretization usually performs two tasks, that are to find the 

number of intervals and the width or boundaries for the intervals, given the range of values of 

a continuous valued feature [Kurgan and Cios, 2001]. 
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Generally, the discretization methods can be categorized one of the following areas; 

« Unsupervised methods: discretizes continuous values of a feature without considering a 

class feature and interdependency with other features. Equal width and equal frequency 

discretization methods are the simplest unsupervised discretization methods. The former 

one just divides value range of a feature to a finite number of equal size bins where the 

number of bins is set by a user. The latter one divides the values of a features into a finite 

number of bins so that each bin contains equal number of values. Since the unsupervised 

methods do not consider class labels, it is more likely to lead to an undesirable 

classification by much possibility assigning values in different classes into same bin 

[Kerber, 1992]. 

* Supervised methods: discretizes continuous values by taking into account 

interdependency with a class and other features. As a statistical based method, the 

ChiMerge [Kerber, 1992] and StatDisc [Richeldi and Rossotto, 1995] are well known. 

The ChiMerge proceeds by testing whether to merge adjacent intervals based on the 

statistics from one interval containing a initial real value. The StatDisc discretizes 

automatically from hierarchy of discretization intervals created by using a criterion 

measure for merging intervals until threshold of the measure is achieved. A number of 

entropy based methods have been proposed. One of the methods employs a recursive 

minimization entropy heuristic associated with Minimum Description Length as a 

stopping criteria to determine the number of intervals [Fayyad and Irani, 1993]. That will 

be used for discretization of continuous values before applying information gain in the 

test performed in this chapter. 

Although many discretization methods have been shown to have good performances, 

this approach has a disadvantage in that it does not use characteristics of continuous values 

itself. Thus we will use two feature quality evaluators, correlation based evaluator and 

ReliefF as stated in the introduction for determining a partition order in the NP-Filter. 

For a correlation based feature evaluator, we modify equation (3.7) which was originally 

developed for evaluating feature subsets [Hall, 1998]. It simply calculates the correlation 

between feature and class, which can be regarded as a Pearson's correlation. 
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ReliefF is an extended version of RELIEF developed by Kira and Rendell (1992) for 

estimating the quality of features that consider interdependency between features. While 

RELIEF can deal with discrete and continuous features, it has problems to deal with 

incomplete (missing values) data and multi class problems. Since ReliefF was developed to 

solve the problems, it will be one of the feature quality evaluators adapted to handle mixed 

type of features. 

Searching for its two nearest neighbors, one from the same class (nearest hit) and the 

other from a different class (nearest miss) given an instance, RELIEF estimates qualities of 

features based on how well each can separate neighbor instances from different classes by 

having different values and have the same values for neighbor instances from the same class 

[Kononenko, 1994]. The RELIEF randomly selects m training instances, where m is the user-

defined parameter and usually set to 10 that has been believed to perform well in many cases. 

for ? = 1 to » 

Q[v4,] = 0.0 

for/ = 1 to m 

randomly select an instance r 

find nearest hit A and nearest miss f 

for i = 1 to % 

QK] = QK] - r, A) / rn + r, f) / m 

Figure 5.1 Pseudocode of RELIEF algorithm [Kononenko, 1994]. 

In the pseudo code of RELIEF, for a discrete feature, (Feafwre, TkyfaMceJ, 7WaMce2) 

= 0, if the values are equal, otherwise it is 1, while for a continuous feature the difference is 

the actual difference normalized to the interval [0, 1]. A High value of Q[^4,] has small 

amount of difference value for same class instances and large amount of difference for 

different class 

As stated previously, ReliefF can handle incomplete and multi-class data. ReliefF finds 

one near miss f(C) for each different class C and calculates weighted average with the prior 

probability of each class as follows; Q[X,] = QM,] - r, A) / m + 
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d#T(/4,,r,f(C))]/m . Thus, it can estimate the capability of features to 
crc lass(r )  

distinguish each pair of classes regardless of which two classes are closer to each other. Since 

the portion of dealing with incomplete data in the ReliefF is somewhat related to a feature 

filter, it is discussed further here. 

Using correlation and ReliefF as a feature evaluator, we compare performances with 

information gain evaluator in perspective of the NP-Filter with several classifiers. The results 

are reported in the next section. 

5.3 Analysis of Numerical Results 

For fairness of this test, we add two more different kinds of data sets in addition to the 

data sets containing all nominal features in Table 3.2. The data sets can be categorized into 

three different domains in terms of data type of features, namely discrete, mixed (discrete and 

continuous) and continuous. However, all the data sets have a nominal class feature. This 

experiment addresses the effectiveness of a feature evaluator on performances in terms of 

accuracy, size, and computation time using the NP-Filter for the data sets as stated in Table 

5.1, and evaluates if the evaluators perform differently according to each domain. 

Table 5.1 Characteristics of the tested data domains. 
Data Set Instances Features Type of Features 

lymph 148 18 

vote 435 16 

audiologv 226 69 all nominal 

cancer 286 9 

kr-vs-kp 3196 36 

anneal 898 38 6 continuous, 3 integer, others nominal 

hepatitis 155 19 2 continuous, 4 integer, others nominal 

credit-g 1000 20 7 continuous, others nominal 

hypothyroid 3772 29 6 continuous, 1 integer, others nominal 

labor 57 16 8 continuous, others nominal 

vehicle 946 18 

glass 214 9 

ionosphere 351 34 all continuous 

segment 2310 19 

diabetes 768 8 
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Three classifiers, Naïve Bayes, C4.5, and 5-nearest neighbor are used to induce 

classification models with the selected features. For simplicity, the parameter & in the t-

nearest neighbor learner is arbitrarily set to 5 since the number of selected features may vary 

for each run. Each case is repeated 5 times, and averages and standard deviations are 

reported. 

First we consider the accuracy of the models induced after feature selection with three 

different feature evaluators compared to the corresponding models without feature selection, 

and second consider simplicity, that is a size of the models after feature selection is 

employed. Strictly speaking, the accuracy of the Naive Bayes learner and size of selected 

features reported in Table 5.2 do not show a significant difference between feature 

evaluators. However, if we admit even small differences, the correlation evaluator has better 

performances in the discrete data set domain where 3 out of 5 data sets have higher 

accuracies. Here the better performance implies higher averaged accuracy and size. If a tie in 

average of accuracy occurs, lower standard deviation is better. 

Table 5.2 Accuracy comparison of Naive Bayes with feature evaluators. 

Data Set 
Info. Gain Correlation ReliefF NFS 

Data Set 
Accuracy Size Accuracy Size Accuracy Size Accuracy Size 

vote *93.710.9 *5.810.8 93.311.3 5.812.4 93.010.7 7.011.0 90.1 16 

audiology 70.112.3 27.014.0 *70.110.8 26.813.3 69.2+1.1 *21.214.4 71.2 69 

cancer 73.9±0.4 5.410.5 *74.010.3 *5.410.5 72.8+1.6 5.410.9 73.4 9 

kr-vs-kp 86.2+6.0 11.411.9 85.7+4.8 11.211.3 *89.018.3 *8.813.0 88.0 36 

lymph 83.4+1.7 11.0+1.0 *84.511.9 *9.811.8 83.511.9 10.811.9 85.1 18 

anneal 85.1±1.7 12.012.0 83.418.0 12.011.4 *86.212.8 *10.212.9 86.3 38 

hepatitis *85.311.1 10.411.1 85.010.8 *10.010.7 83.711.2 11.411.1 83.2 19 

credit-g 73.610.8 *6.810.8 *74.810.8 8.011.0 73.511.7 9.011.7 74.8 20 

hypothyroid 94.4±0.3 7.611.5 94.410.4 7.412.9 *94.410.3 *4.611.3 93.5 29 
labor 91.2±0.0 5.811.5 92.311.0 *5.611.5 *93.010.0 7.212.6 96.5 16 

vehicle 46.6+2.0 *9.812.6 *46.911.1 10.010.8 46.6+0.7 11.811.6 44.3 18 

glass 48.6±0.0 7.010.0 48.610.0 7.010.0 *48.8+1.8 *5.411.1 45.8 9 

ionosphere 88.7±1.6 *16.611.5 86.412.1 19.011.9 *88.711.4 18.013.2 83.2 34 

segment 85.1±2.2 *6.411.1 *86.214.0 7.211.3 81.914.2 8.211.9 80.0 19 
diabetes *76.510.6 4.010.7 75.911.1 *3.810.8 75.910.9 4.610.9 76.2 8 

Note: * implies the best performance among three evaluators. 

Smaller size can be also regarded as better performance with a premise where there is 

significant difference in the number of selected features (size), but it does not present any 



www.manaraa.com

91 

prominent pattern on results we can notice. In mixed type of data domain, the ReliefF shows 

better performances in 3 out of 5 data sets, and correlation and ReliefF report better 

performances in the mixed and continuous data type domain, which implies that capability 

handling a continuous value itself may affect the results. 

In Table 5.2, last two columns show the results for no feature selection (NFS). First for 

the accuracy we note that it actually improves or is no worse when we use feature selection 

except just 4 data sets such as 'audiology', 'lymph', 'anneal', and 'labor'. Such improvement 

in accuracy may or may not occur as discussed previously, but feature dimension reduction, 

real contribution of feature selection resulting in simpler and easier to explain models, was 

accomplished. 

Table 5.3 Accuracy comparison of C4.5 with feature evaluators. 
. o , Info. Gain Correlation ReliefF NFS 

Data Set 
Accuracy Size Accuracy Size Accuracy Size Accuracy Size 

vote 95.6±0.1 6.0±0.7 95.5±0.2 5.810.8 *95.6±0.0 *5.2+1.3 96.6 16 

audiology 75.3±4.0 27.4±1.7 73.0±4.7 25.2±2.2 *76.2±1.3 *23.0±3.6 77.4 69 

cancer *74.6+1.1 5.8±1.1 74.3+0.9 5.8±1.3 73.2±2.8 *5.2±0.8 75.5 9 

kr-vs-kp *93.3±1.4 11.0±3.2 91.2±4.2 11.812.8 92.0±4.2 *10.4±2.5 99.5 36 

lymph *79.2+0.5 10.8±1.9 76.8±2.9 10.6±1.8 76.9±3.7 *8.6±1.9 78.4 18 

anneal 96.6±2.0 *12.4±1.8 97.1±1.0 13.0+2.1 *97.7+0.4 12.8±1.1 98.6 W
 

CO
 

hepatitis *79.6±0.9 10.6±1.1 79.2±1.0 *9.4+0.5 78.9±1.9 11.6±0.9 78.1 19 

credit-g 74.2±1.2 *6.2±1.3 *74.2±0.9 6.811.3 72.7±0.8 8.0±2.6 71.1 20 

hypothyroid 97.0±0.4 5.8±2.2 *97.3±0.6 5.3+1.9 97.2±0.7 *4.8±1.9 99.7 29 

labor 84.9±2.3 *6.2±1.5 83.9±1.5 7.4±1.1 *84.9±1.6 6.6±1.9 77.2 16 

vehicle 69.1±1.8 10.0±1.0 69.8+1.6 *9.8±1.3 *71.7±2.3 11.0±2.4 73.5 18 

glass 67.3±0.0 7.0+0.0 67.8±1.0 6.8+0.4 *67.8±1.3 *6.6±0.5 69.2 9 

ionosphere 89.3±1.6 17.8±2.3 89.2±1.4 *16.6±1.5 *90.7±1.0 16.8±1.1 88.6 34 

segment 96.6±0.3 8.2±1.3 *96.6±0.1 9.4±0.5 96.4±0.2 *4.8±0.8 97.0 19 

diabetes 75.1±0.2 *3.4±0.5 75.3+0.6 4.4±0.5 *75.3±0.1 3.4±0.9 76.7 8 

The accuracy results for C4.5 are reported in Table 5.3. These information gain 

evaluators applying entropy discretization performs better in the discrete data domain. In that 

the discrete domain does not need to employ discretization and C4.5 uses the information 

gain as a feature selection order criterion in a tree composition procedure, it is not surprising 

that the information gain evaluator may perform better in this domain. 
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Comparison results with no feature selection report that the accuracies of the model by 

the NP-Filter with C4.5 induction are a little degraded somewhat. However, we still have 

important benefit of reduction on feature dimension, and if we use NP-Wrapper, the better 

performance would be achieved as noted in Chapter 3. 

In the mixed data type domain, the correlation and ReliefF methods perform better as 

expected in terms of accuracy. The ReliefF performs clearly better in 4 out of 5 data sets in 

the continuous data domain. For the number of selected features, even though the ReliefF 

evaluator in the NP-Filter performs pretty well in the discrete data domain, it does poorly in 

the mixed data domain. 

Accuracies of 5-nearest neighbor in Table 5.4 have similar pattern as those of the 

previous two results. The number of selected features does not show any interesting results as 

similarly reported in the previous two tables. 

Table 5.4 Accuracy comparison of 5-Nearest Neighbor with feature evaluators. 

Data Set 
Info. Gain Correlation ReliefF NFS 

Data Set 
Accuracy Size Accuracy Size Accuracy Size Accuracy Size 

vote 94.3±1.4 *6.2±1.5 *94.7±1.0 7.0±2.5 94.610.9 7.2±0.8 94.3 16 

audiologv *68.3±2.1 24.8±3.8 64.3±1.4 24.2±8.7 66.7±4.4 *20.0±1.7 61.1 69 

cancer 71.3±0.0 5.4±0.5 72.7±1.5 *5.0±0.7 *74.8±1.0 5.0±1.9 72.7 9 

kr-vs-kp 89.9±6.5 11.0±2.9 89.4±5.7 *11.0±2.4 *91.9±5.8 11.2±2.6 96.4 36 

lymph *83.5±0.8 10.8±1.8 81.1±1.7 *9.2±1.5 81.9±2.3 10.2±1.5 79.1 18 

anneal *97.0±0.9 12.6±0.9 96.2±1.0 15.0±4.0 95.1±1.5 *11.6±3.0 97.2 38 

hepatitis *83.6±1.1 10.2±1.3 83.0+1.9 *10.0±0.7 83.4±1.4 10.6±2.1 84.5 19 

credit-g 72.3±0.6 7.8±1.3 *73.3+1.0 *5.8±1.3 71.8±1.2 8.8±2.1 72.4 20 

hypothyroid *96.4±1.5 *5.4±2.5 95.5±0.8 6.4±2.5 95.2+0.9 6.4±1.7 93.5 29 

labor 88.8±1.6 7.8±1.1 89.8±2.3 6.6+1.9 *90.5±1.6 *6.6±1.1 87.7 16 

vehicle 62.1±3.7 *10.0±1.4 63.0±2.3 10.8±0.8 *65.4±3.3 11.6±1.1 70.7 18 

glass *72.2±0.4 6.8±0.4 72.0±0.0 7.0±0.0 71.210.8 *6.4±0.5 65.4 9 

ionosphere *87.3±1.0 17.613.0 86.8±1.9 *16.8±1.8 86.3±1.0 18.0±1.0 85.5 34 

segment 95.4±0.2 7.2+0.4 95.7+0.4 8.0+1.4 *95.8±0.2 *6.0±1.0 95.3 19 

diabetes 73.2±0.4 *3.6±0.5 73.9±0.5 4.2±0.8 *74.4±0.9 4.2±1.1 73.6 8 

Table 5.5 to Table 5.7 report computation time of the NP-Filter of feature evaluators 

induced by each classifier with no feature selection in three domain data sets. From these 

results we see that using no feature selection takes the least amount of time with no wonder 

and the results show that there are no significant differences between the evaluators in the 
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three domains. However it is interesting that the computation time is dependent upon each 

data set. For instance 'audiology' in discrete data, 'anneal' in mixed type data, and 'segment' 

in continuous data domain have surely the least computation time for the NP-Filter with all 

three classifiers when the ReliefF evaluator is applied. The correlation evaluator performs 

better in 'vote', 'hypothyroid', 'vehicle' and 'glass' data sets but not all cases. The 

information gain performs better in 'cancer' and 'ionosphere' data sets. 

T able 5.5 Speed comparison of Naïve Bayes with feature evaluators. 
Data Set Info. Gain Correlation Relief? NFS 

vote 4837+149 *46621287 50511176 641 

audiology 45024±3406 4594213199 *3160715013 601 

cancer *1504119 1536125 15661103 160 

kr-vs-kp 321254±16262 337091118306*319022119854 1002 

lymph 2441±128 2477186 *23611184 170 

anneal 7448915341 7386211775 *6976414545 681 

hepatitis *39891133 4000165 44361444 191 

credit-g *341591341 358671958 40289+6692 501 

hypothyroid 43852617751*4377351124665494901109546 2163 

labor *1596141 1646+43 1630170 160 

vehicle 6042218229 *5674112841 5856216598 721 

glass *489918 52151237 50391436 241 

ionosphere *11179912555 11632112203 11975617895 521 

segment 4167351146156 357812123330 *34125112260 2143 

diabetes *11282166 113081147 11308163 391 

Data Set Info. Gain Correlation ReliefF NFS 

vote 48481167 *48021106 49951186 641 

audiology 4634812082 4609214201 *3227813925 1412 

cancer *1717151 1732166 18491220 430 

kr-vs-kp *329669119654335900114074340483117674 5999 

lymph 25841217 26881191 *23691178 381 

anneal 7424013579 7687013168 *7251412696 4346 

hepatitis 4212198 *4204166 539711166 551 

credit-g *3467311046 357091857 3929912801 2894 

hypothyroid 432754111182 *42967518953 504808141381 5709 

labor *1702142 1738134 1720162 280 

vehicle 64887113926 *5830214186 5905714581 4847 

glass 58021574 *5532142 5539171 1021 
ionosphere *11308811604 11498512864121773114359 3565 

segment 4725921234259375860124725*34272811323 12899 

diabetes 11855189 120331103 *118091173 1732 
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From the results, we could conclude that the computation time of the NP-Filter with a 

feature evaluator is different from each data set regardless of a data domain and classifier. 

Even though no feature selection takes the least time, the benefits from feature selection can 

compensate for loss on the computation time. 

Table 5.7 Speed comparison of 5-Nearest Neighbor with feature evaluators. 
Data Set Info. Gain Correlation ReliefF NFS 

vote *53131218 55861523 58581156 1792 

audiology 43695±5701 4909614750 *3022311481 1852 

cancer 1758122 *1726156 1780199 541 

kr-vs-kp *392868125370398321125837411211116114 179859 

lymph 25251184 2579+124 *23891147 330 

anneal 79706±2529 8495416919 *7963413634 16884 

hepatitis 4106+102 *40981111 46831497 381 

credit-g 39509+1202 *3774411558 4424812201 11176 

hypothyroid *483557132508 513252129240579391169023 219035 

labor 1670±39 *1640162 1660+44 160 

vehicle 62027±4015 *6130815541 6449616698 9103 

glass 5059+57 *505514 5075135 431 

ionosphere *11404213452 11713815827 11983817773 2444 

segment 415931148566 37885617791*37035415679 65454 

diabetes *127381206 129461327 129621392 3245 

5.4 Case Study - Recommander Systems 

In e-commerce applications, recommender systems intelligently suggest products to 

users as well as provide information that helps users make a decision which products to be of 

interest, based on rules or knowledge extracted from data storing observed user behavior and 

experience profiles. The success of such recommender systems depends on how good quality 

of recommendations can be made to users. It is very important to recommend the correct 

products users since such a recommendation lead to have users positively respond. 

In this section, the recommender system for an Internet auction system [Ryan, Min and 

Olafsson, 2001] to facilitate reverse logistics is provided using classification and association 

rules. The Internet auction system is intended to bring together a fragmented market of 

manufacturers, recyclers, demanufacturers and others interested in the take-back and reuse of 
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obsolete recyclable products. To support such an auction system, the recommender system is 

proposed that among other functions recommends to a user if they should participate in a 

particular auction. However, it is equally important that a user understands what goes into 

such recommendation and thus, feature selection is used to build a simple recommendation 

model that can be easily explained. This is a critical aspect due to the fragmentation of the 

market, which implies that many potential users are unfamiliar with each other and the range 

of available products. The new feature selection algorithm applying a nested partition method 

is used for reducing the number of features. 

5.4.1 Recommender System for Reverse Logistics Internet Auction 

This auction system simulates the growing industry of electronics recycling. The reverse 

logistics or returned products from consumers can be regarded as a movement process of 

various types of products or raw materials back from consumers for any reasons. The Internet 

auction system facilitates the process of reverse logistics for recycling. Three types of 

participants, three manufacturers, three demanufacturers, and three recyclers, participate an 

auction for 6 rounds. In each round, participants can bid price and quantity of items to sell or 

to buy [Ryan, Min and Olafsson, 2001]. 

1 CPU 

1 unit Plastic 
Manufacturer Manufacturer Manufacturer Manufacturer 1 CoSeemaker 

1 Computer 
Demanufacturer 

SÉm, 

Demanufacturer 
§p» 

• • Demanufacturer • Demanufacturer 

w 

1 CPU 

1 Memorv Board 

1 Shell 

1 Shell 
Recycler 1 unit Plastic 

Figure 5.2 Relationships among products traded online (bold) and sold externally [Ryan, 
Min, and Olafsson, 2001]. 



www.manaraa.com

96 

As seen in Figure 5.2 and Figure 5.3, Each manufacturer sells computers, and produces 

and sells coffeemakers outside the auction, each of which consists of 1 CPU and 1 unit of 

Plastic that can be purchased from the auction. Demanufacturers buy computers from 

manufacturers and disassemble into CPUs, memory boards, and shells. Demanufacturers can 

sell memory boards outside the auction. Recyclers buy shells from demanufacturers and 

transforms them into plastics. However, the participants can participate in any auction they 

want. 

B2B Market Place 

Computers Plastic 

CPUs 

Shells 
Memory 
Boards 

Manufacturer 

Recycler Demanu facturer 

Figure 5.3 Relationships among participants in the online market place [Ryan, Min, and 
Olafsson, 2001]. 

We constructed two data sets from a database gathered in that prototyped auction system, 

namely auction bids and auction participation data sets. Based on the data sets, we construct 

recommender systems that consist of classification, association, and feature selection. 

5.4.2 Recommendation for Auction Participation 

In order to figure out which auctions can attract participants, the data set below is 

constructed by consisting of 31 features and 1 class feature. Those features state behaviors of 

each participant in each auction round for a specific item as well as characteristics of the 

auction itself and the class feature in the data is YES/NO depending on if the user 

participated in a particular auction or not. The detailed description of which is shown in 

Table 5.8. The data set contains 2592 instances, each of which states an example of an 
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auction including historical and current data of each participant. Using classification and 

association, specifically C4.5 and Apriori, we construct recommender system to generate 

concrete rules that can figure out which auctions have users interested. We expect to create 

rules that may catch out some implicit facts, not just obviously simple ones. 

Table 5.8 Data set description for auction participation. 
Type of Feature Feature Values 

Item {Computer, CPU, Shell, 
Plastic} 

Product Description ItemContainsCPU {T,F} 
ItemContainsShell {T,F} 
ItemContainsP lastic {T, F} 

Round Information Round {1,2, 3,4,5,6} 
PriceForLastComputerAuction Numeric 

Quanti tyF orLastComputerAuction Numeric 

PriceF orLastCPU Auction Numeric 
Information on Last 

Trnrscar+irvn tA 
Quantity F orLastCPU Auction Numeric 

11 tiiioov llVi.1 IV 
PriceForLastShellAuction Numeric 

QuantityF orLastShellAuction Numeric 

PriceForLastPlastic Auction Numeric 

QuantityF orLastP lasticAuction N umeric 

TimeOfParticipantsLastComputerAuction Numeric 

PriceForParticipantsLastComputerAuction Numeric 

QuantityForParticipantsLastComputerAuction Numeric 

CategoryOfParticipantsLastComputerAuction {buy,sell,none} 

T imeOfParticipantsLastCPU Auction Numeric 

PriceForParticipantsLastCPUAuction Numeric 

Information on Last QuantityForParticipantsLastCPUAuction Numeric 

Transaction with CategoryOfParticipantsLastCPUAuction {buy,sell,none} 
Participants T imeOfParticipantsLastShellAuction Numeric 
Involvement PriceForParticipantsLastShell Auction Numeric 

•QuantityForParticipantsLastShellAuction Numeric 

CategorvOfParticipantsLastShellAuction {buy,sell,none} 
TimeOfParticipantsLastPlasticAuction Numeric 

PriceForParticipantsLastPlastic Auction Numeric 

QuantityForParticipantsLastP lasticAuction Numeric 

CategoryOfParticipantsLastP lasticAuction Numeric 
ParticipantN ame {M1,M2, M3,D1,D2, D3, 

Information on R1,R2,R3} 
Participant ParticipantType {Manufacturer. 

Demanufacturer, Recycler} 

Class P articpatelnAuction {yes, no} 

Even though we do not apply any systematic method to a recommender system, 

intuitively we could recommend computers to manufacturers and demanufacturers, plastic to 

recyclers, and so on, since they need specific products according to their purposes. However, 
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it is just simple and clumsy recommendation which does not provide much contribution. 

Thus, we apply classification rule, C4.5, so that recommendation rules are created in the 

following figures. 

Figure 5.4 shows top nodes of the decision tree. The top node, Participant Type, is 

branched into Manufacturer, Demanufacturer and Recycler. Since feature selection is not 

applied to generate this tree, the size is too big to be shown in one simple tree. Next several 

figures represent the decision tree for auction participation. 

Participant 
Type 

Manufacturer Recycler 

Demanufacturei 

ItemContains 
CPU 

Item ItemContains 
Plastic 

Figure 5.4 Root of decision tree for recommendation. 

First let's consider auction behaviors of manufacturers and make some interesting rules 

(See Figure 5.5). Simply we can figure out several rules or conditions from the tree that are 

used to recommend the auction to manufacturers as shown in following examples. 

CPU auction recommendation: 

* If the item is CPU, then we recommend the auction. 

The first rule about the CPU auction is of course obvious as stated previously and does 

not provide any meaningful context. Computer and Shell auctions for manufacturers are 

more complicated than that of CPU. 

Computer auction recommendation: 

* If the time since the manufacturer last participated in a computer auction is less than or 

equal to 1 round, then recommeW the auction. 

* Else if the time since the manufacturer last participated in a computer auction is greater 

than 1 round and the manufacturer bought computers in the last auction, then recommeW 

the auction. 
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Else if the manufacturer sold computers, then do «of recommend. 

Plastic 

Computer 

Time Since M' s 
Last Com. Auction 

> 1  

Category of M' s 
Last Com. Auction 

Time Since M s 
Last Plastic Auction 

Time Since M s 
Last Shell Auction 

Quantity of M s 
Last CPU Auction 

Time Since M s 
Last Com. Auction 

Time Since M s 
Last CPU Auction 

Price of M' s Last 
CPU Auction 

Category of M s 
Last Plastic Auction 

>7.76 Price of M' s Last 
CPU Auction 

<7.76 

Price of M s Last 
Plastic Auction 

Time Since M s 
Last Plastic Auction 

X Category of M' s 
Last Com. Auction 

Quantity of M s 
Last Com. Auction 

>1550 

Figure 5.5 Decision tree of manufacturers' auction recommendation. 

It may be interpreted as follows; if the manufacturer participated in the computer auction 

right before the current round or has never been participated, the manufacturer want to sell 

computers, which is natural. Otherwise if the manufacturer did not participate in the last 

round of a computer auction and has bought computers previously, the manufacturer wants to 

participate in the current auction. That implies that the manufacturer bought computers to 
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earn more money that can be used to buy CPU and Plastic in the last auction, or the 

manufacturer want to sell computers that have left up to the current round. That is not 

surprising in that everyone wants to maximize a profit. Thus, even though manufacturers sold 

all computers they had, they would want to make more coffeemakers to be sold continuously, 

which means they act as a broker. Thinking collectively, we recommend a computer auction 

to manufacturers inferred as they have unsold computers. 

Let's look into Shell auction recommendation rules: 

* If the manufacturer has never participated in a shell auction, then do mo/ recommend the 

auction. 

* Else if the time since the manufacturer last participated in a shell auction is greater than 0 

and the time since the manufacturer last participated in a computer auction is greater than 

1, then do nof recommend the auction. 

* Else if the manufacturer was to sell plastics in the last round, then recommend. 

* Else, do nof recommend the auction. 

It is inferred that manufacturers are interested in shell auctions when they want to act as 

a broker. For example if manufacturers have sold plastics, actually a behavior of a broker, 

shell auctions should be recommended. 

When it comes to Plastic auction recommendation, the following selected rules might be 

created without pointing out concrete values of price and quantity: 

* If the time since the manufacturer last participated in a plastic auction is less than or 

equal to 1, 

* If the manufacturer traded large amount of CPU (greater than 80) last, then 

recommend the auction. 

* Else if the manufacturer traded small amount of CPU last with higher price, then 

recommend the auction. 

* Else if the manufacturer did not participated in a last plastic auction (> 1), 

* If the time since the manufacturer last participated in a CPU auction is greater than 2, 

then recommend the auction. 

* Else if the time since the manufacturer last participated in a CPU auction with higher 

price is less than or equal to 2, then do nof recommend the auction. 



www.manaraa.com

101 

Since these rules refer to values of price and quantity of items, it is hard to infer 

meaningful context. However in a word it seems that if manufacturers bought CPU in 

previous rounds, they need to buy plastics to produce coffeemakers. Thus we recommend the 

plastic auction. In addition, if they did not participate in plastic or CPU auction for a while, 

the auction should be recommended since they have to make coffeemakers continuously. 

Item Contains 
Plastic 

Quantity of Last 
Como. Auction Category of D's Last 

Plastic Auction >800 

<800 
Buy 

None Sell 
Quantity of D's 

Last Shell Auction 
Price of Last 

Plastic Auction 
Time Since D's 

Last Shell Auction 

<800 > 2  < 2  <9 
Item 

Price of Last 
CPU Auction 

Comp. 
Shell 

Quantity of Last 
Plastic Auction <7.5 >7. 

CPU 
<700 

>700 

Price of Last 
Como. Auction 

>5.75 <5.71 

Item 

Comp. 

Shell 
CPU 

Quantity of D's 
Last Shell Auction 

Quantity of Last 
Como. Auction 

<940 
>940 <60' >60 

Yes 

No 

Yes 

No 

No 

No 

Yes No Yes 

No 

No 

Yes 

Yes 

Yes 

Yes 

Figure 5.6 Decision tree of demanufacturers' auction recommendation. 



www.manaraa.com

102 

Now let's look at the decision tree for demanufacturers (See Figure 5.6). The top node of 

demanufaturers splits according as an item is plastic or not. Intuitively if the item is plastic, 

the demanufacturer wants to act as a broker since a plastic is not a part of memory boards. If 

the item is plastic, the recommendation rules for demanufacturers are as follows; 

* If the demanufacturer sold plastics last with higher price, then recommend the auction. 

* Else if the demanufacturer bought plastics last and traded large amount of shells last, then 

do nof recommend the auction. 

* Else if the demanufacturer traded small amount of shells last and CPUs were traded 

with low price last, then recommend the auction. 

* Else, do nof recommend the auction. 

Since demanufacturers behave as a broker, they would be interested in auctions that they 

can make much profit, which is directly reflected in the first rule. The rest of rules imply that 

if they did not earn money from shell and CPU auctions, they would turn their interest to the 

plastic auctions to make money through the broker's behaviors. 

If an item does not contain plastic, the item is one of computer, shell, and CPU. In this 

branch, the demanufacturers show a pattern where they concentrate on their own role, that is, 

buying computers and selling CPU and shell. For example, if computers were traded largely 

in last time, the auction is recommended. Even though the small amount of computers were 

traded last, the computer auction is recommended if the demanufacturer did not participated 

in shell auctions recently. Furthermore, if the demanufacturer participated in shell auctions 

recently but small amount of plastic was traded, the auction is recommended, which indicates 

that demanufacturers are not interested in plastics. Other subtrees can be interpreted very 

similarly with regard that for items not containing plastic, it seems that demanufacturers do 

not follow the role of a broker. 

Briefly, for plastic items demanufacturers show general characteristics for a broker. On 

the other hand, for non plastic items they act their own basic role, that is buying computers 

and selling shell and CPU. However this interpretation could be different from an analyst. 

For more precise analysis, larger and more concrete data sets should be needed. 
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Item Contains 
CPU 

No 
Time Since R's Last 

Plastic Auction 

Time Since R's 
Last Shell Auction 

Time Since R's 
Last Shell Auction 

Yes 
Item 

Quantity of Last 
Plastic Auction 

Shell 'lastic 

>110 Category of R's 
Last Com. Auction No Yes Round 

Quantity of R's 
Last Shell Auction Item 

Yes Item 

>110' 
Plastic Shell Yes 

No Yes 
Yes 

Shell Plastic 

Sell Yes 

Buy Category of R's Last 
Plastic Auction Quantity of Last 

Com. Auction None 
Yes 

Buy >2000 
Sell 

Yes 
No Yes Price of Last 

Shell Auction 
Item 

<8.5 
'lastic 

No Yes 
Yes 

Figure 5.7 Decision tree of recyclers' auction recommendation. 
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For recyclers, what kind of an auction should be recommended? In a word, recyclers do 

not act behaviors of a broker in that the first node splits depending on whether or not the item 

contains CPU. The items that contain CPU are computer and CPU itself. Thus from the tree, 

it is easily found that the auction for items containing CPU is not recommended to recyclers, 

which implies that recyclers do not participate in auctions as a broker only. If items do not 

contain CPU, that is shell or plastic, the following rules can be selectively made as follows; 

* If the time since the recycler last participated in a plastic auction is greater than 1 and the 

time since the recycler last participated in a shell auction is also greater than 1 (did not 

participated in plastic and shell auction last time), then recommend the auction. 

* Else if the recycler participated in a plastic auction last time but did not participated in a 

shell auction last time, then the auction is recommended if the item is plastic and the 

recycler bought large amount of shells last time. Otherwise it is nof recommended if the 

item is shell. 

* Else if the recycler participated in a plastic auction last time and also participated in a 

shell auction last time but small amount of plastic was traded, then recommend the 

auction. 

The other rules depend on the auction round, price, quantity, and some conditions. First 

let's consider the first rule above. It is not surprising in that if the recycler did not participate 

in plastic and shell auction in the last round, business transactions for those parts would be 

definitely needed to continuously make profit. The second rule implies that recyclers would 

not like to buy shells anymore and be interested in selling inventory of plastics. The third rule 

would be also understood in accordance with the second one. 

We investigated recommendation rules based on decision tree induced classification 

algorithm, C4.5, using a full size of data set with 32 features and 2592 instances. Generally, 

most learning algorithms are not scalable with the increasing number of features. Thus it is 

critical to reduce the feature dimension for faster induction of classification. Even though the 

number, 32, in this prototyped data set is quite manageable, real data sets would have huge 

amount of data. In order to reduce the feature dimension, the NP-Wrapper is used with C4.5 

classification learning algorithm. Hence, we have much smaller size of data set with 10 

selected features but even accuracy improvement, 84.7% versus 85.5%. 
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Manufacturer 
Demanufacturer 

Participant 
Type 

Recycler 

Plastic Com. 
CPU Shell 

Yes 

Yes No 

Com. 
CPU Shell 

Yes 

Yes Yes 
Item Contains 

CPU 

Quantity of R s 
Last Com. Auction 

Round 

>400 <400 

Price of Last 
Com. Auction Category of R's 

Last Com. Auction 
Price of Last 
Com. Auction 

7.5 >\7.5 

< 8.63/ >8.63 
Participant 

Name 
Category of R s 

Last Com. Auction 

Plastic Quantity of R s 
Last Com. Auction None 

Price of Last 
Com. Auction 

<1100 >1100 

Participant 
Name 

Price of Last 
Plastic Auction 

>9.75 <9.75 
Plastic 

Price of Last 
Plastic Auction 

Figure 5.8 Decision tree reduced by feature selection. 
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The selected 10 features are as follows; 

- Item 

- ItemContainsCPU 

- ItemContamsShell 

- Round 

- PriceF orLastComputerAuction 

- PriceForLastPlastic Auction 

- QuantityForParticipantsLastComputerAuction 

- CategoryOfParticipantsLastComputerAuction 

- ParticipantName 

- ParticipantType 

The induced decision tree based on the reduced data set is shown in Figure 5.8. 

Comparing time to build the model, 1.94 seconds for full data set is significantly reduced to 

0.64 seconds for reduced data set. Of course, the size of the tree also becomes much smaller, 

which means that the small size of decision tree can be more easily interpreted and provide 

clear recommendation. 

One major difference with the full size decision tree is that shell auctions are not 

recommended to manufacturers and plastic auctions are not recommended to 

demanufacturers. This fact would imply that recommendation rules derived from the full size 

tree where manufacturers and demanufacturers act brokering behaviors for the non-direct 

trade product (shell for manufacturers and plastic for demanufacturers) cannot be always 

applied, that is, those rules do not clearly represent auction behaviors of manufacturers and 

demanufacturers. The role of them as a broker is not a general action pattern for the auction 

participation. Of course, they might act as a broker for the direct trade items (e.g. computers 

for manufacturers). However, it seems more reasonable that manufacturers and 

demanufacturers might not be interested in brokering behaviors in auctions. 

The decision tree for recyclers has very similar structure of the full size decision tree. 

For example, recyclers do not participate in the auction for items containing CPU, which is 

exactly same as one from the full size tree. And other subtrees show that they are primarily 

interested in shell and plastic auctions. 
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We just investigated recommendation rules using a classification rule, C4.5. Now we 

apply association rule called Apriori to create a recommender. Given a set of instances each 

of which contains some number of items from a given collection, association rules produce 

dependency rules which will predict occurrence of an item based on occurrences of other 

items. The following association rules are selectively chosen among ones derived from the 

reduced data set. 

* Price for last computer auction = (-inf-1.26] and Price for last plastic auction = (-inf-1.4] 

=> Quantity for participants last computer auction = (-inf-220] 

* Price for last computer auction = (-inf-1.26] => Quantity for participants in last 

computer auction = (-inf-220] 

* Price for last computer auction = (-inf-1.26] and Quantity for participants in last 

computer auction = (-inf-220] => Price for last plastic auction = (-inf-1.4] 

* Item containing CPU = True and Participant type = Recycler => Participate in auction = 

no 

» Price for last computer auction = (-inf-1.26] => Quantity for participants in last 

computer auction = (-inf-220] 

* Price for last computer auction = (-inf-1.26] => Price for last plastic auction = (-inf-1.4] 

Let's look into the first rule above. If computers and plastics were traded with cheap 

prices in the last time, participants traded small amount of computers in last time. It is natural 

that the price of computers affects the quantity of computers of participants. However, we 

can infer that the price of plastic also affects the quantity, even though the exact reason is not 

explicitly known. The third and last rule could provide a clue in that the rule, 'if computers 

were traded with cheap price in the last time, then plastics were traded also with cheap price', 

can be explained as participants (probably manufacturers) who did not make much money 

from the computer auction are not affordable to pay for high-priced plastics. The fourth rule 

provides exactly same result as one from decision tree in that recyclers do not participate in 

auctions for item containing CPU, which supports the rule that recyclers do not act as only a 

broker. 
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5.4.3 Recommendation for Auction Bid 

In addition to identifying which auctions are of interest, it may be also of interest to 

predict the probability of a bid success/failure, and even predict a likely settlement price. 

Through similar ways performed in the previous section, we explore what auctions should be 

recommended using classification algorithm, C4.5. To do that the following data set is 

constructed considering participant information and basic bid statistics on previous auctions 

with three class features (See Table 5.9). The data set consists of 30 features including class 

features and 2592 instances reflecting results of previous auction bids. 

This data set has three class features, settlement price, quantity traded and bid success. 

Specifically, the bid success features is a calculated one, awarded quantity / traded quantity, 

which implies that 1 represents acquiring all products, fractional value does partial success, 

and 0 means failure on bids. In case that the traded quantity is 0, it is classified to 'no trade' 

since it has a different meaning from failure (none). When this data set is used in 

classification process, one of three features is included in the data set. 

As expected this data set consists of almost numeric features, the induced decision tree is 

too complicated to be interpreted. Thus we applied NP-Wrapper with C4.5 classification 

algorithm and ReliefF feature evaluator so that the following 12 features were selected. In 

this case, the bid success feature was used as a class feature. 

- AverageSettlementPrice 

- TotalQuantityTraded 

- HighestAskBid 

- LowestSellBid 

- HighestSellBid 

- LastSettlementPrice 

- LastQuantity 

- LastNumberOfAskBids 

- LastLowestAskBid 

- LastLowestSellBid 

- Category 

- BidPrice 
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Table 5.9 Data set description for auction bid (2592 instances, 27 features + 3 class). 

Type of Feature Feature Values 

Participant 
Information 

Item 
Participant Name 

Participant Type 

{Computer, CPU, Shell, Plastic} 
{Ml, M2, M3, Dl, D2, D3, R1,R2. R3} 
{Manufacturer, Demanufacturer, Recycler} 

Average Settlement Price Numeric 

Total Quantity Numeric 

Overall number of ask bids Numeric 

Accumulative Item 
Overall number of sell bids Numeric 

Accumulative Item 
Overall lowest ask bid Numeric 

Overall highest ask bid Numeric 

Overall lowest sell bid Numeric 

Overall highest sell bid Numeric-

Last Settlement Price Numeric 

Last Quantity Numeric 

Last Number of ask bids Numeric 

Last Auction for Item 
Last Number of sell bids Numeric 

Last Auction for Item 
Last Lowest ask bid Numeric 

Last Highest ask bid Numeric 
Last Lowest sell bid Numeric 

Last Highest sell bid Numeric 

Participants Last 
Last Bid Category 
Last Bid- Ask Price 

{buy, sell, none} 

Numeric 
Auction for Item Last Requested Quantity 

Last Awarded Quantity 

Numeric 

Numeric 

Category {buy, sell, none} 
Participants Current Bid/Ask Price Numeric 

Auction Requested Quantity 

Awarded Quantity 

Numeric 

Numeric 
Settlement Price Numeric 

Class Variables Quantity Traded Numeric 
Bid Success none, partial, all. notrade ! 

The accuracy is improved 77.4% of the full size decision tree to 81.5%. The time to 

build a model is also reduced significantly, 3.84 seconds versus 1.95 seconds. The Figure 5.9 

- 5.11 show the decision tree induced from the reduced data set. 

Let's look into the decision tree one after another from the top node. The tree begins 

splitting the node, Bid Price, by determining whether or not a participant makes a bid in an 

auction. If the bid price is 0, it would result in either none or no trade since the participant did 

not make a bid in the auction. Thus we exclude the part for the bid price less than or equal to 

0 in our analysis to create recommendations. The next node is Total Traded Quantity up to 

the current round auction. Figure 5.9 shows the part that the total traded quantity is less than 

or equal to 100. 
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Synthetically, the decision tree shows which conditions can be classified to one of bid 

results such as all, partial, none, or no trade. Let's consider the following recommendation 

rules selectively chosen. 

* If the total traded quantity is small and the average settlement price is low, then the bid 

results in no trade. 

* Else if the average settlement price is high and the last settlement price is also high, then 

the bid results in no trade. 

The rule above shows some cases that the bid results in no trade, which means that 

nobody did not succeed in that auction without considering whether or not participants made 

bids. The first rule is natural since the auction that no one wins has no settlement price and 

no traded quantity. However the second rule is a little more interesting than the first one 

since it gives a notion that no one participates in the auctions titled a high price. 

Let's further consider rules starting from the next node to the last settlement price, 

Highest Ask Price. 

» If the highest ask bid is low but the current bid price is high, then the bid results in no 

trade. 

* If the ask bid price is low, then the bid results in none. 

* Else if the ask bid price is in average range and the average settlement price is low, 

then the bid results in all. 

* If the average settlement price is high and the bid price is much higher than the 

average settlement price, then bid results all 

* Else, then the bid results in none. 

* Else if the highest ask bid is high but the bid price is much lower than the highest ask 

price, then the bid results in none. 

* If the bid price is high but lower than the highest ask price, and the average settlement 

price is low, then the bid results in partial. 

* If the average settlement price is as high as the highest ask price and the bid price 

is also high, then the bid results in all. 
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I l l  

Rid Price 

> 0  <0 

Total Qty 
Traded 

>100 <100 

Avg. Settlement 
Price 

<2.33 
>2.33 

NoTrade 

Last Settlement 
Price >3.5 

NoTrade <3.5 

Highest Ask Price 

<11.5 

Bid Price Bid Price 

< 7.25, 7.25 >9.25 
Category 

NoTrade None Avg. Settlement 
Price 

None \Sell Buy 

>11.5 None 
Bid Price Highest Sell Bid 

Partial Bid Price 

>5.25 <5.25 >8.11 >12.5 <12.5 
All None Avg. Settlement 

Price All 
Bid Price 

Bid Price <5.55 >5.55 >9.5 <9.5 
All >6.12 <6.1 Bid Price 

All None 

All None 

All None 

Figure 5.9 Decision tree for auction bid recommendation where the total traded quantity is 
less than or equal to 100. 
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Total Qty 
Traded >950 

<950 

<0.5 Lowest Sell Bid 

Avg. Settlement 
Price >0.5 <4.93 

>4.91 Category 

Sell None Category 

Sell Buy 

Bid Price 

Buy None 

None None Bid Price 

>8.49 <8.49 
>7J54 Highest Ask 

Bid <7.25 
Bid Price Last Settlement 

Price >7.25 >9.49 <9.49 ^ 6.0i 
> 6.06 

Avg. Settlement 
Price Lowest 

Sell Bid <7.5 
Highest Ask 

Bid >7.5 >7.5 Bid Price <7.5 
<5.99 

>5.99 <13 Avg. Settlement 
Price 

Lowest 
Sell Bid >8.5 

Highest Ask 
Bid 

<9.25 >9.25 

Bid Price 

<6.1 >6.12 

None 

None 

None 

None 

All 

None 

None 

None 

Partial 

Partial 

Partial 

Partial 

Partial 

NoTrade 

None Partial 

Figure 5.10 Decision tree for auction bid recommendation where the total traded quantity is 
greater than 100 but less than or equal to 950. 

Since describing a value of price in rules is meaningless, just simple terms, namely high 

and low were used. Those rules might be intuitively guessed but can be used to make 

recommendations to help users bid more confidently. 
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Total Qty 
Traded <950 

>950 

Avg. Settlement 
Price <7.68 

>7.68 

Last Qty Last Settlement 
Price 

<401 > 401 
>7.89 <7.89 

Category 
Category Last Lowest 

Ask Bid Buy Sell 
Buy, Sell 

<5.3/ >5.3 Bid Price Bid Price 

Bid Price Bid Price 
NoTrade 

Partial > 4.5 < 6.6 > 6.6 Partial 

Last Lowest 
Ask Bid 

Last Lowest 
Sell Bid 

Last No. of 
Ask Bid 

Lowest 
Sell Bid 

Highest 
Ask Bid 

>3.33 >7.01 <4 >4 >10 
Partial 

Partial Partial None Highest 
Ask Bid 

Last Lowest 
Sell Bid 

Total Qty 
Traded 

Avg. Settlement 
Price <3.9 

>10.5 
X9.33 
Partial 

>1010 Partial 
All None 

<9.33 Last Qty 
None 

Bid Price <1700, Last Qty >1700 <5.5 
5.5 None Partial <375 >375 

None 
Last Settlement 

Price 

Total Qty 
Traded >8.7 

Partial <21Q! >2100 f Highest 
< n fVsell Bid All 

9.5 
Partial None 

None 

Figure 5.11 Decision tree for auction bid recommendation where the total traded quantity is 
greater than 950. 
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The first rule could be interpreted as follows; if the current bid is for a sell auction but 

the bid price is higher than the highest ask bid price, the auction would have no winner. The 

second rule is actually straightforward. Participants would not want to sell their products to 

ones to buy them with cheap price. The other rules can also be interpreted in terms of similar 

context of situation. 

We explore some interesting facts from Figure 5.10. The general pattern of these rules 

can be very similarly interpreted in that the bid results depend on the relationship between 

the bid price and historical bid prices. In the situation where the total traded quantity is in a 

middle range (more than 100 and less than or equal to 950 in Figure 5.10), if the lowest sell 

bid price is very low and the average settlement price is low, then the bid results in no trade. 

That implies that auctions with very low lowest bid price and average settlement price can 

not attract participants so that it does not make any trade. However, at that point, if the 

average settlement price is a little high, then the buy bid would make partial win. Otherwise 

the sell bid would result in none. The rules of decision tree in Figure 5.11 can be explained in 

the same context. These rules reflect transactional history for auction bids and predict results 

of current bids. Thus, it is believed that the recommender shown previously can provide a 

dynamic guidance whenever they make bids so that it helps participants win auctions. 

5.5 Summary and Discussion 

In this chapter, we briefly reviewed discretization, which is needed to evaluate a 

continuous valued feature or apply some learning algorithms and basic concept of the ReliefF 

evaluator required for determining a partitioning order in the NP frame. 

In terms of accuracy and size of selected features, the numerical results showed that in 

three data domains there are no significant differences between feature evaluators in the NP-

Filter, and when compared with no feature selection, the NP-Filter with the evaluators, 

accuracies improves or are not worse in most cases and we achieved significant reduction on 

feature dimension. In terms of accuracy, the information gain evaluator with entropy 

discretization performs a little better in the discrete data domain. On the other hand, the 

ReliefF presents better performances in the continuous data domain. In the mixed type data 

domain, any evaluator did not show conspicuously better results. When it comes to 
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computation time of the NP-Filter applying the evaluators with three classifiers, it is 

dependent on the data set itself regardless of any specific data domain. 

Further in order to verify that the NP feature selection method can really handle the 

mixed type of data set, we performed a case study by constructing a recommander system 

based on decision tree induced by classification and association rules. We show that it can 

provide auction users with a good decision support tool for auction participation and bids. 

Furthermore, we stated that scalability can be achieved by reducing the number of 

features to fast respond to users' demands, which is a critical issue in an online auction 

system. Even though it takes time for feature selection process, it would not make a problem 

since it can be batch-processed in off-line status. 

As a case study of the NP feature selection method which can handle mixed type of 

features, we constructed recommender systems for auction participation and auction bids 

using classification and association rules with their interpretations. It would be meaningful 

that this research provided how feature selection and learning algorithm can make 

contribution on an online auction system. However since the recommendation rules were 

derived using data gathered from a prototyped system having some limitation, for example, 

sealed bid double auction system and limited number of rounds, products and users. Thus, it 

is hard to apply these results to a real auction system by the stated limits. 
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6 CONCLUSION 

We have developed a new scalable optimization based feature selection methods that can 

be implemented as both a filter and a wrapper. The methods provide significant contributions 

in that the NP based feature selection algorithm has an optimization framework even 

presenting a scalable structure and can effectively be used to create learning models that are 

easily interpreted as a preprocessing step prior applying learning algorithms. The major 

contributions of this dissertation are as follows: 

* Optimization based feature selection 

It is shown that the new approach with an optimization framework can guarantee 

an optimal solution given a certain distance of the optimum with a given 

probability after a finite time stopping criterion is satisfied. The numerical results 

show that the new method performs quite well on several comparison test 

problems. Through numerical results, we showed why intelligent partitioning is 

important with respect to accuracy and speed and that using random sampling on 

instances can be a potential way for handling large number of instances in the 

NP-Filter. Finally, due to the partitioning scheme of the NP, adding simply new 

features at the maximum depth is faster than starting over. 

* Systematic approaches to scalable feature selection 

First we have showed that the generic NP feature selection algorithm is scalable 

for the number of instances. To address this, we have presented two systematic 

ways for scalable feature selection. First, we used an analytical approach to find 

an optimal solution for the instance sampling rate based on the NP/Rinott using 

relationships between a variance of performances and the proportion of instance. 

Second, we developed an adaptive sampling algorithm called Adaptive NP-Filter 

based on the NP-Filter that the number of instance samples can be dynamically 

changed. Numerical results on the comparison tests of the three approaches 

reported that the adaptive sampling approach in the Adaptive NP-Filter is a very 
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scalable feature selection method with acceptable accuracy level and the 

NP/Rinott-Filter can be as well a good feature selection method according to 

some conditions and preferences of experimenters. 

* Mixed type of features and recommender systems 

We have briefly reviewed discretization and feature quality evaluators in terms of 

their ability to deal with continuous variables. In terms of accuracy and size of 

selected features, we presented numerical results to report the benefits of feature 

selection when compared with no feature selection and evaluate the NP-Filter 

with the evaluators on nominal, mixed type, and continuous data domains. In 

terms of accuracy, the information gain evaluator with entropy discretization 

performs a little better in the discrete data domain while the ReliefF presents 

better performances in the continuous data domain. The computation time of the 

NP-Filter applying the evaluators was dependent on the each data set regardless 

of any specific data domain. Furthermore, as an application of feature selection 

we performed a case study by constructing a recommender system based on 

decision tree induced by classification and association rules. We created rules 

that can provide auction users with a decision support for auction participation 

and bids. In addition, we addressed the benefits of feature selection in 

recommender systems. 

All of the research problems considered in this dissertation address important elements 

in designing scalable feature selection and benefits of feature selection with application to 

recommender systems under the situation where information we need increases exponentially 

so that huge amount of data needs to be efficiently handled. 

Some of the future research directions include: other than scalability of instance 

dimension, research on scalability of feature dimension needs to be made in more systematic 

approach. In the Adaptive NP algorithm we used a step size of instance sampling rate that is 

decreased in inverse proportion to the depth. However, analytical approach is needed to 

calculate more intelligent step size. When it comes to recommender systems, rather than 
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recommendations focused on the accuracy, new research focus should be directed to how to 

satisfy demands of users in view of human computer interface, that is a problem on 

recommendation display. Here the key issue is how to create recommendations that users can 

easily and quickly understand. 
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APPENDIX A RELATIONSHIP BETWEEN PERFORMANCE 

VARIANCES AND INSTANCE SAMPLING RATES 

The numerical results were reported according to the NP-Filter (Naive Bayes 

classifier)'s 5 times run for each data set. 

-*— Breastl 

— BreastZ ' 
BreastS 

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 

Instance Sampling Rate 

Figure A.l Performance variances for instance sampling rates of three different modified 
data sets with 7 features and 1 class feature of 'cancer' data set. 

-»—Votel 
-*— Vote21 

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 

Instance Sampling Rate 

Figure A.2 Performance variances for instance sampling rates of two different modified data 
sets with 7 features and 1 class feature of 'vote' data set. 
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Figure A.3 Performance variances for instance sampling rates of three different modified 
data sets with 7 features and 1 class feature of 'kr-vs-kp' data set. 
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Figure A.4 Performance variances for instance sampling rates of three different modified 
data sets with 7 features and 1 class feature of 'lymph' data set. 
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APPENDIX B ADAPTIVE NP-FILTER EVALUATION 

» l ily 

1 501 1001 1501 2001 2501 3001 3501 4001 4501 5001 5501 6001 

Iterations 

1 36 71 106 141 176 211 246 281 315 351 386 421 456 491 526 561 596 631 666 

Iterations 

1 122 243 364 485 606 727 848 969 1090 1211 1332 1453 1574 1695 1816 

Iterations 

52 103 154 205 256 307 358 409 460 511 562 613 664 715 766 817 668 919 970 

Iterations 

Figure B.l Moving averages of instance sampling rates of 'audiology" data set with 4 
different initial sampling rates, 5, 20,40, 80, c = 1.0, last 3, and&= 5. 
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1 22 43 64 85 106 127 148 169 190 211 232 253 274 295 316 337 358 379 

Iterations Iterations 

Figure B.2 Moving averages of instance sampling rates of 'audiology" data set with 4 
different initial sampling rates, 5,20,40, 80, c = 1.0, last 7, and &= 5. 
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Iterations 

1 156 311 466 621 776 931 1086 1241 1396 1551 1706 1 861 2016 2171 2326 

Iterations 

Figure B.3 Moving averages of instance sampling rates of 'audiology" data set with 4 
different initial sampling rates, 5, 20,40, 80, c = 1.2, last 7V= 3, and & = 5. 

1 801 1601 2401 3201 4001 4801 5601 6401 7201 8001 8801 9601 
Iterations 

Iterations Iterations 

Figure B.4 Moving averages of instance sampling rates of "audiology" data set with 4 
different initial sampling rates, 5,20,40, 80, c = 1.2, last TV = 7, and & = 5. 
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Figure B.5 Moving averages of instance sampling rates of 'vote' data set with 4 different 
initial sampling rates, 5, 20, 40, 80, c = 1.0, last M= 2, and &= 5. 
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Figure B.6 Moving averages of instance sampling rates of "vote' data set with 4 different 
initial sampling rates, 5, 20, 40, 80, c = 1.2, last 1, and A = 5. 
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Figure B.7 Moving averages of instance sampling rates of 'cancer' data set with 4 different 
initial sampling rates, 5, 20,40, 80, c = 1.0, last # = 1, and &= 5. 
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Figure B.8 Moving averages of instance sampling rates of 'cancer" data set with 4 different 
initial sampling rates, 5, 20,40, 80, c = 1.2, last #= 1, and & = 5. 
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Figure B.9 Moving averages of instance sampling rates of Tcr-vs-kp' data set with 4 different 
initial sampling rates, 5, 20, 40, 80, c = 1.0, last #=4, and&= 5. 
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Figure B.10 Moving averages of instance sampling rates of Tcr-vs-kp' data set with 4 different 
initial sampling rates, 5, 20,40, 80, c = 1.2, last #=2, and& = 5. 
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Figure B.l 1 Moving averages of instance sampling rates of 'lymph' data set with 4 different 
initial sampling rates, 5,20,40, 80, c = 1.0, last 1, and &= 5. 
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Figure B.12 Moving averages of instance sampling rates of lymph' data set with 4 different 
initial sampling rates» 5, 20, 40, 80, c = 1.0, last M = 2, and&= 5. 
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Figure B.13 Moving averages of instance sampling rates of lymph' data set with 4 different 
initial sampling rates, 5, 20,40, 80, c = 1.2, last# = 1, and & = 5. 

71 141 211 281 351 421 491 561 631 701 771 641 911 981 1051 

Iterations 

1 133 265 397 529 661 793 S25 1057 1189 1321 1453 1585 1717 1849 1981 

Iterations 

60 •! S ! 
« 50 ] 

25 33 41 49 57 65 73 81 89 97 105 113 121 129 137 145 

iterations 

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 

Iterations 

Figure B.14 Moving averages of instance sampling rates of 'lymph' data set with 4 different 
initial sampling rates, 5,20,40, 80, c = 1.2, last# =2, and & = 5. 
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Table B.l Numerical results of Adaptive NP-Filter with c = 1.0 and last 7/= 10%. 

Da* s* S(%) A™™? Backtracks 

5 92.4±2.2 700±188 9.8±4.0 9.1=6.1 

10 91.2±1.2 762±90 8.6±2.6 7.0±4.7 

vote 20 92.&W.8 669±46 6.4±2.1 5.4±2.0 

40 93.0=1=1.7 859±125 5.8^2.2 9.4±7.3 

80 93.6±0.7 1474=1=17 omo.o 36.5±0.0 

5 69.9±2.6 53206±18499 138.8±26.5 70.8±13.6 

10 72.6=1=2.0 44006±33919 89.4±58.2 54.5±6.5 

audiology 20 72.7±1.6 49587±31218 98.4±57.7 52.5=1:26.5 

40 71.0±2.8 75714±20107 123.2±20.8 85.7±10.8 

80 69.6^1.0 229611±392499 434.4=1=802.3 90.2=1=10.8 

5 73.0±1.6 779±354 31.4±19.5 25.0+12.0 

10 73.6±0.8 630±292 26.0±21.0 17.5±10.2 

cancer 20 73.7±0.6 502±12.7 13.2±7.4 27.1±14.4 

40 73.7±0.4 795±488 34.2±37.9 26.0±13.3 

80 73.6±0.5 524±37 3.8±3.9 29.4±2.1 

5 89.9±2.3 7350±2296 5.8±2.9 5.3±3.9 

10 86.8±2.9 13222±15670 10.4±13.8 8.0±9.6 

kr-vs-kp 20 88.5±5.5 9243±2440 6.2±2.2 8.1±4.7 

40 90.7±1.5 13312±806 3.6&1.1 6.2±3.3 

80 84.1±7.2 51772±5016 0.260.4 35.9=1=2.3 

5 83.9±1.1 7754&4051 604.0±341.8 20.1±12.6 

10 84.3±0.7 3391±5420 226.0±484.7 18.5=1=4.7 

lymph 20 83.9±1.8 2996=4202 171.6±360.2 16.0±16.2 

40 84.9±1.4 1091=1:127 5.0±3.7 20.6±9.5 

80 84.5±1.3 1101±101 1.6=1=1.7 38.3±4.9 
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Table B.2 Numerical results of Adaptive NP-Filter with c = 1.2 and last JV= 5%. 

^2% Accuracy Speed Backtracks 

5 91.961.6 408864836 281.46419.9 7.069.7 

10 92.061.2 19346177 111.8628.6 1.860.3 

vote 20 92.461.2 351562490 222.66193.3 6.1610.1 

40 91.861.1 278661500 161.26108.6 1.860.4 

80 92.360.6 1032668 0.060.0 16.560.0 

5 71.561.6 137866676940 1356.26767.9 14.167.0 

10 70.462.3 79718647661 755.66470.5 14.064.0 

audiology 20 71.362.8 201865*137215 1492.86911.8 17.265.1 

40 69.561.4 2116066119611 2076.6^1585.6 12.364.6 

80 69.861.9 80335654251 274.66223.2 39.069.6 

cancer N/A 

5 87.163.2 15583619838 19.2618.4 4.262.6 

10 88.361.2 522561035 10.462.9 2.460.8 
kr-vs-kp 20 86.362.8 14207618690 14.4613.4 7.8612.0 

40 90.062.6 943962266 12.863.0 3.962.2 

80 85.465.7 3490668611 2.465.4 21.166.5 

5 83.960.9 405064653 205.06284.8 14.966.7 

10 84.661.2 8911610493 513.66641.4 16.067.2 
lymph 20 84.262.2 636764015 343.66239.7 17.6610.5 

40 84.661.2 1462967557 867.26508.2 13.468.6 

80 84.360.9 577667818 285.46485.8 11.261.5 
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